
354 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A .NET Remoting Medical Record
Management System

Farid Hallouche and Matt Wendling

Dept of Compt. Sci. & Info. Systems, Saginaw Valley State University, 7400 Bay Rd., University Ctr, MI 48710, USA, hallouch@svsu.edu

ABSTRACT
The work presented here demonstrates that .Net Remoting is a simple
yet powerful tool that enables disparate applications on different
platforms to communicate transparently in a distributed architecture.
This has the advantage of eliminating time-consuming and often-
complicated development required for distributed applications found in
earlier protocols such as DCOM and COM+. We present the design and
implementation of a client/server application based on the .NET
Remoting architecture. Using C#, a database-driven solution, the Medi-
cal Record Management System (MRMS), is developed that allows
patients’ medical records to be entered, updated, stored, and accessed
automatically, and in a fine distributed environment.

INTRODUCTION TO .NET REMOTING
The .Net Remoting technology presents a myriad of very useful features
and provides an infrastructure that includes various hosting options,
message formatters, transport channels, lifetime management, and
activation policies. Unlike older enablers, .Net is not a proprietary
binary protocol. This makes it possible for an application to work across
any platform. .Net Remoting is adaptable to different transport
protocol formats, as well as different communication protocols. It can
make numerous calls from the client and also supports callbacks. Since
.Net Remoting is a homogeneous environment, the client must be built
using a framework that is supported by .Net Remoting. The channels
are used to transport messages to and from the remote object. The most
commonly used channels are the HTTP Channel, the TCP Channel, and
the SMTP Channel. The messages are encoded and then decoded before
being transported by the channel. The .Net Remoting provides two
message encoding schemes; binary encoding and SOAP encoding. While
the binary encoding is slightly faster, the SOAP encoding is more suitable
to electronic communication over the internet. A server object is
created as a listener and accepts requests from remote objects. The server
must be bound to an unused port. A request from a client-activated object
will activate the server-side object. The “new” operator requests a
message to be sent to the remote application. Objects are passed from
one application to another by method calls using parameters, return
values, or by reference from a field access. Once the remotable and server
objects have been instantiated, the client will be able to connect to the
server.

.NET REMOTING VS. DCOM
Distributed Computing Environment (DCE) / Remote Procedure Calls
(RPC) has been the cornerstone for many higher level protocols such
as DCOM and COM+ used in recent years for distributed applications.
Applications used primarily for file and printer sharing also incorpo-
rated the DCE/RPC protocol. These applications include MS SQL
Server, MS Exchange Server, and Network File System (NFS). The
Distributed Component Object Model (DCOM) is an extension of the
Component Object Model (COM) and uses a pinging process to manage
the objects lifetime. As long as the client is sending messages via these
objects, the server will maintain the object otherwise it will be destroyed.
DCOM requires a direct TCP connection since it is based on the DCE/

RPC protocol and makes the use of HTTP proxies impossible. COM+
also formally known as Microsoft Transaction Server (MTS) provided
a Remoting platform as well as security and deployment services.
However, COM+ does not support the automatic marshalling of objects
(passing objects between applications by value); instead data structures
are passed using ADO recordsets or by other means of serialization. Thus
COM+ can be complicated and time consuming for the developer to
configure and implement.

Before the advent of .NET Remoting, Microsoft used primarily DCOM
for distributed applications. .NET Remoting overcome many of the
DCOM difficulties. Because DCOM depends on proprietary binary
protocol, it presents problems with regards to inter-platform operability
as well as connectivity through the internet. Also, .NET remoting is
much easier to learn, deploy, maintain and extend than DCOM.

Table 1 summarizes some of the differences between .NET Remoting and
DCOM.

DESCRIPTION OF MRMS
In the medical field, one major area of practice that could definitely
benefit from the application of appropriate information technology
systems would be that of patient records. Many medical offices still keep
and access medical records on paper. This system that has been
widespread for many years, could very well improve its overall effi-
ciency and convenience of accessing medical records through the use of

DCOM .NET Remoting
* Requires a direct TCP
connection.
* Uses a pinging process to
manage object’s lifet ime.
* Works best when similar
applications are within the
same network.
* Has serious connectivity
problems when
applications distribute
through different network
environments or the
internet.
* Offers little extensibility.
* It is difficult to log
DCOM messages
* Hard to learn, deploy and
maintain.
* Difficult to change
channel configuration, or
control message formats.

* Uses HTTP and TCP
default channels.
* HTTPChannel uses HTTP
protocol, and formats
messages using SOAP.
* TCPChannel uses TCP
protocol, and uses binary
format for messages.
* Uses simple and efficient
leasing approaches to
manage object’s lifet ime.
* Makes it easier to build
.NET applications, or web
services across different
platforms.
* Easier to learn, deploy,
maintain, and provides an
extensible framework.
* Allows change of channel
configuration and message
formats.
* Allows HTTPChannel and
TCPChannel to be extended,
or a new channel created.
* Because of HTTP, it is
firewall friendly.

Table 1. Comparison of .NET Remoting and DCOM

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5200

IDEA GROUP PUBLISHING

This paper appears in Managing Modern Organizations Through Information Technology, Proceedings of the 2005 Information
Resources Management Association International Conference, edited by Mehdi Khosrow-Pour. Copyright 2005, Idea Group Inc.

Managing Modern Organizations With Information Technology 355

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

computer systems. Indeed, by creating a centralized data server for
storing all records electronically, not only would medical records be
much easier and faster to access by medial doctors, but also by other
authorized parties as well such as pharmacies, medical labs, etc.

Our work is a contribution to demonstrate the application of a fairly new
distributed technology, .NET Remoting, to the medical record problem.
The system that is being implemented, the Medical Record Management
System (MRMS) (Figure 1), is comprised of both client and server side
applications. In general, the client software logs into the system and
sends requests to the server software to view and/or modify a certain
patient’s health record. The server acknowledges these requests, makes
sure they are valid, and performs the requested data operations. The
server uses a database to store all of the electronic records, and also
requires an application to allow for client offices to connect to it as
needed to access these records.

The MRMS is composed of a centralized server which stores client login
information as well as patient records. Multiple clients currently have
simultaneous, two-way communication with the server, which has been
tested over a LAN connection. Clients can also connect over the
Internet and through secure firewalls. Figure 1 shows a schematic block
diagram of the MRMS.

The client program is developed in Visual Studio .NET using C#. It runs
on a Windows platform using the .NET Framework and Remoting. The
program runs in a standard window and requires the user to sign in with
a personalized username and password. Each user will have a customized
level of access to certain patient records depending on their position in
the medical field. Whatever this access level may be, the interface of
the client application will provide easy access to all functions that any
particular user is allowed to perform.

The server side application is also developed using C#, for a Windows
2003 environment. The form of this application is a remote object
hosted in IIS. Currently, clients can make remote calls to this object to
process login information as well as viewing, modifying, and adding to
user, office, and general patient information. This information is
currently being stored in a database on the server using Microsoft
Desktop Engine (MSDE) or SQL server. ADO.NET is used on the server-
end to access information stored in databases. In order to secure
communications with client programs, SSL is implemented. Figure 1
shows a simple general flow of communication within the MRMS.

Currently, the MRMS’s server contains only a single database and two
remote objects. Both will be discussed here in further detail, including
information on how to configure both the client and server applications.

The Server Database
The database currently consists of two general categories of tables: The
user, login, and office tables are used mainly to store information
pertaining to the system users and their facilities. The patient,
conditions, prescriptions, primary visit, and secondary visit tables are
used to store the actual patient record information. These sets of tables
could easily be divided into several different databases to better distribute
server tasks.

The Remote Objects
The other major role of the server is to host the remote objects. This
is how the clients will connect to the server and access the information
stored in the databases. The two remote objects were programmed in
C#, compiled into .dlls, and hosted as a web service using Internet
Information Service (IIS) and the SOAP formatter. HTTP is used as the
network protocol to avoid firewall issues and so SSL could be easily
implemented. The RecordManager remote object handles most of the
patient record queries, and the RemoteLogin object deals mainly with
system information and user authentication. Again, it is very easy to
distribute the server application by simply using multiple remote
objects.

Configuration of the Server
The specific hosting environment used for the server on this project is
Windows Server 2003. The operating system, along with IIS and SQL
Server 2000, was installed on a personal notebook computer to simulate
the server. After the remote objects were compiled, the following
external XML configuration file was created to define the remote object
as a web service.

<configuration>

<system.runtime.remoting>

 <application>

<service>

 <wellknown mode=”SingleCall”

type=”RemoteLogin, RemLog” objectUri=”RemLog.soap” />

 <wellknown mode=”SingleCall”

type=”RecordManager, RecMan”

objectUri=”RecMan.soap” />

</service>

 </application>

</system.runtime.remoting>

</configuration>

This file was then placed in a directory along with another folder called
bin. Inside of bin, RecMan.dll and RemLog.dll were placed, along with
the .dll of the class library created for the system. A virtual directory
was then created in IIS Manager which points to the directory containing
all of this Remote Object information. At this point, the server is ready
and waiting for clients to make calls to the hosted objects.

The Client Interface
The client in the MRMS (Figure 2) is mainly a graphical interface that
allows users to log into the system to view and manipulate patient
records. The level of control that each user has depends on his or her
position in the medical field. For instance, a hospital can quickly and
easily view patient conditions and medical history in emergencies.
However, a hospital should not be allowed to add offices, users, and
patients into the system as these are tasks of a system administrator.
Furthermore, pharmacies should only be allowed to view and fill
prescriptions, and labs should only be allowed to view and perform tests

Figure 1. Block Diagram of MRMS

356 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

as prescribed by a doctor. Obviously, each level of access must be
carefully and thoroughly thought out and implemented.

Configuration of the Client
The client must also have its connection to the server properly
configured. Again, a simple XML configuration file does most of the
work. An external configuration file also allows the server’s IP address
to be manually changed relatively easily, as well as the used protocol,
port, etc. The configuration file below is used when the client and server
are being run on the same machine.

<configuration>

 <system.runtime.remoting>

<application name = “ClientGUI”>

 <client>

<wellknown type=”IRemoteLogin, IRemLog”

url=”https://127.0.0.1/RemObjs/RemLog.soap” />

<wellknown type=”IRecordManager, IRecMan”

url=”https://127.0.0.1/RemObjs/RecMan.soap” />

 </client>

 <channels>

<channel ref=”http” port=”0" />

 </channels>

</application>

 </system.runtime.remoting>

</configuration>

This file must be located in the same directory as the client executable,
and the IP address must be set to the address of the server, instead of the
loopback address 127.0.0.1. The compiled .dll for the created class
library, as well as the .dlls for the remote objects’ interfaces must also
reside in this directory. The second part of the client configuration
process can be seen in the following code snippets (Figures 3, 4).

Once this configuration is complete, the remoteLogin and recordManager
proxy interface objects can be used just as a typical object, only the calls
will be fulfilled by the object on the server. Figures 5a and 5b give an
example of this communication. PatientCls is defined in the class library
of the system, and is responsible for holding all information on a single
patient. A SSN is stored in the PatientCls and then it is passed by

reference to the remote object. The remote object then queries the
database for all information on that patient and returns true if the
patient was successfully populated, or false otherwise. Because the
PatientCls was sent by references, the changes made on the server will
be reflected in the local copy.

Secure Communication
Due to the confidential nature of patient records, a system such as our
proposed MRMS would obviously need to implement an extensive
amount of security. Possibly the most important and relevant area of
security for our study deals with the communication channels between
client applications and the central server. Fortunately, like many other
aspects of .NET Remoting, implementing such security measures is
relatively simple. When remote objects are hosted in IIS, as is the case
with our MRMS, secure communication can be guaranteed by simply
using SSL certificates

Secure Socket Layers (SSL) is a protocol that provides a secure channel
(a secure TCP connection) between two internetwork hosts. It has
quickly become the standard for authenticating and encrypting commu-
nications between Websites and Client Web Browsers. Almost every web
browser and web server worldwide supports web transactions using SSL.
Besides its famous use for securing web traffic, SSL is also used to secure
file transfer (FTP), email transmission (SMTP), directory access
(LDAP), etc. To ensure its reliable operation, SSL runs on top of TCP.
In HTTP traffic, the client opens a TCP connection, on top of which
an SSL channel is secured. Then, the HTTP request is sent over the SSL
path. The server also responds through the SSL medium. Upon connect-
ing to a secure server, a client receives a digital certificate authenticating

Figure 2. Main Client GUI for the MRMS

private bool Init ialized;
private IDictionary WellKnownTypes;
private static Object GetObject(Type type) {

if (!Init ialized){
Initialized = true;
WellKnownTypes = new Hashtable();
foreach (WellKnownClientTypeEntry entr in

RemotingConfiguration.GetRegisteredWellKno
wnClientTypes())

WellKnownTypes.Add
(entr.Ob jectType,entr); }

WellKnownClientTypeEntry entr =
(WellKnownClientTypeEntry) WellKnownTypes[type];

return
Activator.GetObject(entr.ObjectType,entr.ObjectUrl); }

Figure 3. GetObject Function Assists in Configuring a Proxy Object for
the Client

Figure 4. Example Code Using GetObject to Connect the Proxy Interfaces
to the Remote Objects

RemotingConfiguration.Configure("MedicalRecords.exe.
config");
IRemoteLogin remoteLogin =
(IRemoteLogin)GetObject(typeof(IRemoteLogin));
IRecordManager recordManager =
(IRecordManager)GetOb ject(typeof(IRecordManager));

PatientCls currentPatient = new Pat ientCls();
currentPatient.setSSN(ssn);

recordManager.fillPatient(re f currentPat ient);

Figure 5a. Example Client Code Calling fillPatient to Retrieve Patient
Record Information

Managing Modern Organizations With Information Technology 357

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

the site. Subsequently, the client generates a unique session key that will
encrypt the communications with the site. The client then encrypts the
session key with the site’s public key so that only the site knows how
to read any information passed to it.

There is no built-in security in .NET Remoting. SSL works the same way
when applied to .NET Remoting. For our MRMS, however, some extra
work was needed in addition to setting up the server. Because SSL
certificates must be purchased from a Certificate Authority (CA), we
instead chose to work with Open SSL and create and sign a certificate
ourselves. Because clients will not recognize this self-signed certificate
as being from a trusted CA, the SSL Certificate Policy must be changed
to allow the use of the certificate. Furthermore, while testing the
system, we could not guarantee that the IP address of the server would
always match the certificate. Figure 6 shows a class that changes the
certificate policy to account for these problems. Also, the security
features of a hosting Internet Information Services (IIS) can be used.

CONCLUSION
The combination of the expanding Internet and the onset of object-
oriented programming have created the need for internetwork commu-
nication between software components and objects. Microsoft’s .NET
Framework and Remoting not only fulfill this need, but also do so in a
manner that makes programming such applications relatively simple
and highly customizable. Being a new technology, perhaps not many
large-scale, real-world applications currently exist that use .NET
Remoting. Our MRMS, which allows patient records to be accessed from
any location, would be an ideal example use for such a powerful and highly
promising technology as .NET Remoting.

Several key aspects of the .NET Remoting technology address issues of
concern for such a medical system. For example, when dealing with
medical records, confidentiality is a must; therefore, the additional tier
of security added by .NET Remoting would prove to be quite useful.
While most medical records could still be stored in a conventional
database, the client application would first have to access the remote
object on the server, which in turn would make any needed queries to the
database, and then return the results to the client. By adding this extra
step to the system, any potential hackers would have to get through
multiple levels of security to access any confidential information. Also,
by choosing to use remote objects to process client requests and access
the database, any changes or additions to the system are less likely to
have an impact on the client applications. Furthermore, the transmis-
sion of information between the client and server must also be kept
secure. .NET Remoting allows for both custom security measures, as well
as means to easily implement existing encryption technologies, such as
SSL, into the system.

The legacy technologies such as COM, COM+, and DCOM were much
more cumbersome when working with distributed applications. Our work
is a feasibility study that demonstrates the benefits of such technologies
by testing them through a real-life solution. More research work is
envisaged related to remoting channels, database access, user access
rights, developing solutions for heterogeneous network systems, and
XML services.

REFERENCES
[1] Asaduzzaman Ahm “Forget the DCOM Pain and Use Remoting or

Web Services” 29 Sep 2003. [Internet] http://www.devarticles.com/
c/a/Web-Services

[2] Forslund, David and David Kilman “The Virtual Patient Record: A
Key to Distributed Healthcare and Telemedicine” 29 Feb 1996.
[Internet] http:/ /openemed.net/background/TeleMed/Papers/
virtual.html

[3] Longman, Eric “Self-Signed IIS SSL Certificates using OpenSSL”
02 June 2003. [Internet] http://eal.us/blog/_archives/2003/6/2/
25109.html

[4] Rescola, Eric “SSL and TLS: Designing and Building Secure Ssystems”,
Addison Wesley, 2001, 0-201-615983.

public string strConn =
"Provider=SQLOLEDB;DataSource=" +
"NOTEBOOK2k3\\VSDOTNET;" + "Init ial
Catalog=medical;" + "User ID=sa";

public bool fillPatient(ref Pat ientCls patient){
OleDbConnection cn = new

OleDbConnection(strConn);
cn.Open();

string strSQL = "SELECT fname, lname, mi,
address, city, state, zip, phone, doctor,
iname, " + "inumber, ip lan FROM
patients WHERE ssn = '" +
patient.getSSN() + "'";

OleDbCommand cmd = new
OleDbCommand(strSQL,cn);

OleDbDataReader rdr = cmd.ExecuteReader();
if(rdr.Read()){

patient.setName(rdr["fname"].ToString(),
rdr["lname"].ToString(),
rdr[" mi"].ToString());

patient.setAddress(rdr["address"].ToString(),
rdr["city"].ToString(),
rdr["state"].ToString(),
rdr["zip"].ToString());

patient.setPhone(rdr["phone"].ToString());
patient.setDoctor(rdr["doctor"].ToString());
patient.setInsurance(rdr["iname"].ToString(),

rdr["inumber"].ToSt ring(),
rdr["ip lan"].ToString()); }

else {
cn.Close();
return false; }
cn.Close();
return true; }

Figure 5b. Example fillPatient Function from the recordManager
Remote Object Class

public class MyPolicy : ICertificatePolicy
{

public bool CheckValidationResult(Serv icePoint
srvPoint, X509Certificate certificate,

WebRequest request, int certificateProblem)
{

string untrustedRoot = "800B0109";
string cnNoMatch = "800B010F";

int untrustedRootVal =
Convert.ToInt32(untrustedRoot,16);
int cnNoMatchVal = Convert.ToInt32(cnNoMatch,16);

if (cert ificateProblem == 0 || cert ificateProblem ==
untrustedRootVal || cert ificateProblem ==
cnNoMatchVal)

return true;
else

return false;
}

}

Figure 6. Changing Certificate Policies in C#

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/net-remoting-medical-record-

management/32610

Related Content

Performance Appraisal
Chandra Sekhar Patro (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

4337-4346).

www.irma-international.org/chapter/performance-appraisal/184140

Deploying Privacy Improved RBAC in Web Information Systems
Ioannis Mavridis (2011). International Journal of Information Technologies and Systems Approach (pp. 70-

87).

www.irma-international.org/article/deploying-privacy-improved-rbac-web/55804

Optimization of Cyber Defense Exercises Using Balanced Software Development Methodology
Radek Ošlejšekand Tomáš Pitner (2021). International Journal of Information Technologies and Systems

Approach (pp. 136-155).

www.irma-international.org/article/optimization-of-cyber-defense-exercises-using-balanced-software-development-

methodology/272763

Research Directions on Incorporating Work System Method Ideas in Systems Analysis and

Design
Ram B. Misra, Doncho Petkovand Olga Petkova (2009). Handbook of Research on Contemporary

Theoretical Models in Information Systems (pp. 131-140).

www.irma-international.org/chapter/research-directions-incorporating-work-system/35828

Implications of Pressure for Shortening the Time to Market (TTM) in Defense Projects
Moti Frankand Boaz Carmi (2014). International Journal of Information Technologies and Systems

Approach (pp. 23-40).

www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-

projects/109088

http://www.igi-global.com/proceeding-paper/net-remoting-medical-record-management/32610
http://www.igi-global.com/proceeding-paper/net-remoting-medical-record-management/32610
http://www.irma-international.org/chapter/performance-appraisal/184140
http://www.irma-international.org/article/deploying-privacy-improved-rbac-web/55804
http://www.irma-international.org/article/optimization-of-cyber-defense-exercises-using-balanced-software-development-methodology/272763
http://www.irma-international.org/article/optimization-of-cyber-defense-exercises-using-balanced-software-development-methodology/272763
http://www.irma-international.org/chapter/research-directions-incorporating-work-system/35828
http://www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-projects/109088
http://www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-projects/109088

