Conceptual Optimization in Business Process Management

Yves Callejas, Jean Louis Cavarero and Martine Collard
Université de Nice-Sophia Antipolis, Laboratoire I3S, 2000, route des lucioles, 06903 Sophia Antipolis cedex, France
callejas@wanadoo.fr, jlcava@aol.com, mcollard@unice.fr

ABSTRACT
To optimise business processes is a very complex task. The goal is double: to improve productivity and quality. The method, developed in this paper, is composed of 4 steps: the first one is the modelisation step (to describe the business process in a very rigorous way), then a conceptual optimisation (supported by evaluation and simulation tools) to improve the business process structure (to make it more consistent, to normalise it), then an operational optimisation to improve the business process performing (to make it more efficient) by providing to each operation the necessary resources and at last a global optimisation (to take into account all the business processes of the company under study). The conceptual optimisation is, in fact, a static optimisation (achieved independently of resources) while the operational optimisation is dynamic. The main difference between these 2 steps is the fact that the first one is totally hand made (we want to build, from the set of indicators provided by evaluation and simulation, the best business process as possible), in opposition with the second which is totally automatic (since it requires linear and non linear programming tools).

This method is the result of three years research achieved for the French organism “Caisses d’Allocations Familiales: CAF”. It was validated on the business processes of the CAF, which deal with information (files and documents), but it can also be applied on industrial business processes (dealing with products and materials).

INTRODUCTION
Business process optimisation is one of the major issues of any company. The main goals are to improve processes quality and to improve their productivity, by increasing the number of output flows and/or by decreasing the quantity of necessary resources.

Since the appearing of object oriented paradigm, methods to design Information Systems have been oriented towards the class notion. The evolution of technical environment, use of Internet technology, led to consider Information Systems as a tool of data, or materials). Business process (BP) is composed of operations (tasks) and resources (possessing competencies) which have to deal with flows (of data, or materials). Business process management and optimization are quite recent ideas since processes were implicit in each organisation culture so far.

The method presented in this paper starts with a previous modelling step followed by three main steps:

- Modelisation step makes it possible to represent BP with a model which has the usual guarantees of any good model: readability, normalisation, genericity, and which induces an optimisation more rigorous, more consistent and less hazardous. Modelisation was decided for all these reasons in order to avoid an empirical optimisation consisting in improving each BP from clues based on its behaviour, by trying to find out local solutions for the parts which run worst or the less correctly.

- Conceptual optimisation step which does not take into account resources; it is a structural and static optimisation.

- Operational optimisation step which consists in optimising the performing of the BP by taking into account resources, which means by locating them the best way as possible. It is a dynamic optimisation since the goal is to optimise performances.

- Multi-BP optimisation step which is used to optimise (in the operational way) several BP simultaneously.

MODELISATION
Concepts
Four concepts are necessary to model business processes: operation, flow, resources and competencies.

- OPERATIONS: an operation is a task of a business process. Each operation can be mandatory or optional, and disactivable (or not).

- PRIMARY FLOWS: are the flows of data or materials which are to be treated (in input or output).

- Secondary flows: are data flows containing useful and helpful information to deal with primary flows (guidelines, precisions, complements, …)

- Triggering operations events: are necessary events (not always sufficient because a primary is most of the time also necessary) to trigger operations (for example a special date).

RESOURCES AND COMPETENCIES: These 2 concepts are linked. A resource is a group of persons having the same set of competencies. A resource possesses one or several competencies. A competency can be associated to several resources (N: M link). The set of resources is a partition of the persons set.

We consider that each operation is one-competency (to be performed an operation needs persons having the same competency). In a BP, each swim lane contains all the operations which need the same competency. A specific swim lane is associated to automatic operations.

MODEL
The chosen model is directly inspired from the UML activity diagrams. Fig. 1 shows the UML concepts which are used. It is a subset of the available set of elements in UML.

Tool
In order to build activity diagrams, we can use any tool supporting UML notations. We can choose either a full UML environment like RATIO-
NAL ROSE or DESCRIBE or a graphic modelling tool like VISIO or SMARTDRAW. Several criteria are to be taken into account to make the right choice: conformity with the UML 1.4 norm, graphic quality of documents, opportunity of exporting diagrams in XML in order to provide right inputs for simulation tools, learning facilities, ergonomy. DESCRIBE was finally chosen, because it is the tool which satisfy the better these criteria. As an example, Fig 2 shows a part of a real diagram built for the CAF.

CONCEPTUAL OPTIMISATION

The modelling step provides a diagram of the BP (by using the previous concepts) in order to evaluate it (with simulation and evaluation tools) and to optimise it in the right directions by taking into account its structure and its defaults (and still so far without resources). The conceptual optimisation is static.

Evaluation Step

The goal of this step is to collect all useful information to improve the BP structure. This information is given by indicators and objectives graph. Some of them are provided by simulation.

Indicators

Indicators are used to evaluate a BP. They are of 2 kinds: model indicators and BP indicators.

- Model indicators: they are used to evaluate the consistency of a BP independently of its finality. They are theoretical indicators (in opposition to BP indicators). They provide an evaluation of the diagram quality and make it possible to check that diagrams are satisfying the norms given by the model. In others words, to check that the conceptual optimisation step delivers well built diagrams.

 The list of model indicators is following: maximum number of input flows in each operation, maximum number of output flows in each operation, average number of flows per operation, number of optional operations / number of operations, number of disactivable operations / number of operations, number of loops, cyclomatic number (number of bows/number of nodes + 2), diagram density (number of bows/maximum number of bows), average number of operations per competency, average number of flows per competency.

- BP indicators: they are used to evaluate performances and dysfunctionnings of a BP. Their values are useful to determine the optimisation priorities (see objectives graph, Fig. 4).

Once achieved the conceptual optimisation, a second evaluation of these indicators can be done in order to check that the goals have been satisfied. The modelling step and the objectives graph step make it possible to find out (for a given BP) the list of the useful indicators.

Hierarchical Objectives Graph

It is necessary to build a hierarchy of optimisation objectives and to identify precisely those which are means compare to the others. Thus, we propose to build a “hierarchical objectives graph” (HOG). This kind of graph makes it possible to show clearly the hierarchical relationships between objectives.

If the graph is well built and exhaustive, all its leaves are the actions to perform in order to optimise the BP. More precisely, the graph is built by connecting (if possible) to each node (objective) some indicators, values of which will be provided by evaluation and simulation steps (in the example I1, I2 and I3). The graph is helpful to build an optimise BP because it gives the hierarchical links between objectives and then optimisation priorities. Each BP has its own graph. The bows of the graph have to be valuated (with percentages) in order to give the satisfaction weight of an objective to another one (higher in the hierarchy) and to guide the process optimisation.

Fig. 4 shows a part of the objectives graph of the BP introduced in Fig. 3.
Simulation Step
This step is dedicated to the study of the BP behaviour in order to find out some of the possible improvements (addition or deletion operations and/or flows, detection of wrong cycles, detection of congestion points,...). Obviously, this step requires a simulation tool (SIMPROCESS was chosen).

The simulation step is also used to give values to indicators, such as the reject ratio per operation. It is an essential step to evaluate correctly BP.

Note: the use of a simulation tool requires to modelise the BP (in the form wanted by the tool). In our case, since BP are already modelled (in DESCRIBE), we had to build a specific tool to convert DESCRIBE diagrams into SIMPROCESS diagrams (in XML).

Conceptual Optimisation Step
The conceptual optimisation of a BP is achieved from information provided by evaluation step, simulation step and objectives graph step. The goal is to build the best BP as possible (in regards to norms, indicators, objectives hierarchy). It is a very tough step (totally hand made) which requires to take into account simultaneously a very large number of information and a great know how. Thus, values of some model indicators will induce creation or suppression of some operations and/or flows, values of some BP indicators will generate creation of some new paths in the diagram (by validating or deleting optional operations) or creation of new documents, analysis of the objectives graph make it possible to identify the parts of the BP which have to be optimised in priority.

Conceptual optimisation is totally guided by the objectives graph: weights are used to know priorities and indicators are used to decide if the nodes are easy to optimise or not. In the example, we can decide to give a priority to the objective “decrease the time to perform a file” if the values of I2 are too high and if the weight of this objective in regards to the root objective is high. In this case, we have to (following the graph) modify some resources and add some operations. In opposition, if the value of I1 is too low and if the weight of the objective “to increase readability of documents” is high, then we have to design new documents.

Actually, the conceptual optimisation of a BP is achieved par a lot of improvements (defined in the leaves of the graph) performed on its diagram, in regards to the objectives graph which gives the right directions. But the diagram’s improvement has to be done in respect of concepts: we can’t do anything forbidden or in opposition with the given rules. For this reason, we have defined the exhaustive list of generic actions (meta-actions) which are possible to do. This list is the tools box in which the designer can find any action which may optimise the BP.

Each leaf of the graph has to be obviously an instance of one meta-action.

Examples of meta-actions: to add a new operation, to automate partially an operation, to split an operation (in 2 or more) to add a new flow, to split a flow (in 2 or more), to merge 2 or more flows into 1, to modify a flow, to add a new competency, to modify a competency’s profile, to change the destination operation of a flow.

Fig. 5 shows the whole schema of a conceptual optimisation. We may note that evaluation and simulation can be performed several times: once to provide necessary information to optimise, and then others to check the results of the optimisation.

OPERATIONAL OPTIMISATION
This step consists in giving to each operation of a BP, resources and competencies, in order to maximise output flows. Actually, the final goal is to provide a command tool to predict the best resources affectation as possible, by taking into account different hypothesis of degraded performing (for example absenteeism) as well as flows stocks (flows which have not been treated).

This third step is divided in two distinct issues:

- Issue 1: Searching optimum of outputs flows (by an optimised affectation of resources and competencies to operations (linear optimisation).
- Issue 2: Locating resources and competencies on each operation at the right time (non linear optimisation).

To illustrate this step, let’s take an example of BP given in Fig. 6.

This BP is composed of 8 operations (A1, A2,..., A8) and 9 resources (R1, R2,..., R9). The relationships between resources and competencies are given in Fig. 7. The stocks of flows are given in Fig. 8.

Let fp be the number of units of flow p treated and wjk be the used time of the resource Rj for its competency Ck (during the chosen period).

Let us consider the two following constraints, expressed as follows:

\[\sum_{p \in P} f_p \times w_{jk} \leq \text{MaxFlows} \]

\[\sum_{p \in P} f_p \times w_{jk} \geq \text{MinFlows} \]

Subject to the linear constraints above, the objective function (linear optimisation) can be formalised as follows:

\[\text{Maximize} \quad \sum_{p \in P} f_p \]

subject to:

\[\sum_{p \in P} f_p \times w_{jk} \leq \text{MaxFlows} \]

\[\sum_{p \in P} f_p \times w_{jk} \geq \text{MinFlows} \]

To solve this problem, let’s consider the following example:

Let us suppose that the number of units of flow p treated is 10 units, the used time of the resource Rj for its competency Ck is 1 hour, and the number of operations performed on the diagram is 10 operations. The objective function can be formalised as follows:

\[\text{Maximize} \quad \sum_{p \in P} f_p \]

subject to:

\[\sum_{p \in P} f_p \times w_{jk} \leq \text{MaxFlows} \]

\[\sum_{p \in P} f_p \times w_{jk} \geq \text{MinFlows} \]

To solve this problem, let’s consider the following example:

Let us suppose that the number of units of flow p treated is 10 units, the used time of the resource Rj for its competency Ck is 1 hour, and the number of operations performed on the diagram is 10 operations. The objective function can be formalised as follows:

\[\text{Maximize} \quad \sum_{p \in P} f_p \]

subject to:

\[\sum_{p \in P} f_p \times w_{jk} \leq \text{MaxFlows} \]

\[\sum_{p \in P} f_p \times w_{jk} \geq \text{MinFlows} \]

To solve this problem, let’s consider the following example:

Let us suppose that the number of units of flow p treated is 10 units, the used time of the resource Rj for its competency Ck is 1 hour, and the number of operations performed on the diagram is 10 operations. The objective function can be formalised as follows:

\[\text{Maximize} \quad \sum_{p \in P} f_p \]

subject to:

\[\sum_{p \in P} f_p \times w_{jk} \leq \text{MaxFlows} \]

\[\sum_{p \in P} f_p \times w_{jk} \geq \text{MinFlows} \]

To solve this problem, let’s consider the following example:

Let us suppose that the number of units of flow p treated is 10 units, the used time of the resource Rj for its competency Ck is 1 hour, and the number of operations performed on the diagram is 10 operations. The objective function can be formalised as follows:

\[\text{Maximize} \quad \sum_{p \in P} f_p \]

subject to:

\[\sum_{p \in P} f_p \times w_{jk} \leq \text{MaxFlows} \]

\[\sum_{p \in P} f_p \times w_{jk} \geq \text{MinFlows} \]
Availability constraints of resources:
For each resource, total used time should not be higher than available time. There are 9 constraints of this kind:
Resource R1: \(w_{12} \leq TR_1 \)
Resource R2: \(w_{21} + w_{22} \leq TR_2 \)
Resource R3: \(w_{33} \leq TR_3 \)
Resource R4: \(w_{41} + w_{44} \leq TR_4 \)
Resource R5: \(w_{54} \leq TR_5 \)
Resource R6: \(w_{62} + w_{63} \leq TR_6 \)
Resource R7: \(w_{72} \leq TR_7 \)
Resource R8: \(w_{82} \leq TR_8 \)
Resource R9: \(w_{91} \leq TR_9 \)

Pouring constraints on flows: Input and output flows can be multiple.
To express that input flow \(f_2 \) is appreciatively 60% of the total input flow (\(f_1 + f_2 \)), we write one constraint on the flow from \(f_1 \) and on the flow from \(f_2 \):
\(f_2 \geq 1.4 \times f_1 \) and \(f_2 \leq 1.6 \times f_1 \).

To express that output flow \(f_4 \) is appreciatively 80% of the total output flow (\(f_4 + f_5 \)), we write one constraint on the flow from \(f_4 \) and on the flow from \(f_5 \):
\(f_4 \geq 3.9 \times f_5 \) and \(f_4 \leq 4.1 \times f_5 \).

For each operation, the sum of output flows has to be inferior to the sum of input flows:
\(f_{11} \leq f_9 + f_{10} \)
\(f_9 \leq f_6 \)
\(f_6 \leq f_3 \)
\(f_3 \leq f_1 \)
\(f_{10} \leq f_7 + f_8 \)
\(f_7 \leq f_4 \)
\(f_8 \leq f_5 \)
\(f_4 + f_5 \leq f_2 \)

To solve the system we also have to take into account two types of constraints (see Box 2).
These equations can also be formulated by using variables \(x_i \) (instead of variables \(f_p \)), \(x_i \) being the number of times operation \(A_i \) is performed.

Fig. 9 shows relationships between \(x_i \) and \(f_p \).
The solver provides values of \(x_i \), \(f_p \) and \(w_{jk} \) which optimise output flows.
The results are given in the next tables.

Issue 2 consists in searching dated resources locations. (Who does what and when?).

For this reason, we have to split the period (35 hours in the example) in 10 slices of same length \(D \) (3.5 h in the example), and we have to find out quantities of resources to give to each operation in each slice.
The result will be the used resources and competencies for each slice. For this issue, the system solving has to take into account 3 types of constraints:

Exclusivity constraints on competencies:
For each multiple competency resource, at most one competency is used in each slice. As we have 9 resources and 10 slices, we have 90 constraints of this kind. If we name \(\{C_{jk}\}_{k=1}^p \) the set of competencies associated to resource \(R_j \), the constraint may be expressed in the following way:
\(\forall (\text{Resource } R_j, \text{slice } t) \exists \text{ at most one } k \in 1..p \text{ such that } C_{jk} \text{ is used in slice } t. \)
Evolution constraints on flows:

We assume that flows evolve in a discontinuous way. After each slice, flows evolve in regards to resources provided to operations and available flows of the previous slice. Let’s take a basic example (Figure 14).

The formula which gives flow \(f_b \) after slice \(t \) is:

\[
Flux(b,t) = Flux(b,t-1) + Min(Flux(a,t-1), aik(t) \times D/T_i) - Min(Flux(b,t-1), ajk(t) \times D/T_j)
\]

Where \(aik(t) \) represents the number of times competency \(C_k \) is used for operation \(A_i \) on the slice \(t \).

It is necessary to adapt this formula if operation \(A_i \) or \(A_j \) are preceded and/or followed by several operations.

An additional table is used to give quantities of input flows on each slice (in regards to the chosen arrival law).

The solver provides values of \(aik(t) \) which optimise the repartition of resources and competencies on each slice and associated flows.

The table of Fig. 16 shows, the number of times \(aik(t) \) competency \(C_k \) is used for operation \(A_i \) for the slice \(t \). For example, on the first slice, three resources of competency \(C_2 \) are given to operation \(A_5 \) and on the fourth slice two resources of competency \(C_3 \) are given to operation \(A_6 \).

The table of Fig. 17 shows the number of flows units treated after each slice.

The table of Fig. 18 shows, for each resource and each slice, the use of associated competencies. For example, on the first slice, resources \(R_2 \), \(R_6 \) and \(R_7 \) are the three resources of competency \(C_2 \) given to operation \(A_5 \) and on the fourth slice, resources \(R_4 \) and \(R_5 \) are the two resources of competency \(C_4 \) given to operation \(A_6 \).

The last three tables give the command diagram of the BP which makes it possible to pilot by defining for each slice, the optimal affectation of resources and competencies to operations.

Note: the tool « Premium Solver » was used for the operational step.

MULTI-BP OPTIMISATION

As indicated by its name, multi-BP optimisation consists in optimising simultaneously several BP. Obviously, this step does not involve conceptual optimisation (which is, by definition, made on one BP).

Using constraints of resources in operations:

They are equality constraints. For each slice and for each competency, there is equality between quantities of competencies used by operations and quantities of competencies taken in resources. In the example, there are four competencies and 10 slices; we have then 40 constraints of this kind.

If we name \(\{aik(t)\}_{k=1,p} \) the set of used times of competency \(C_k \) for the operation \(A_i \) on the slice \(t \) and \(\{w'jk(t)\}_{k=1,q} \) the set of used times of resource \(R_j \) for its competency \(C_k \) on the same slice, the constraint may be expressed in the following way: \(\sum_{k=1,p} aik(t) = \sum_{k=1,q} w'jk(t) \)

Where \(aik(t) \times D \) : \(w'jk(t) \) representing the number of times competency \(C_k \) is used for operation \(A_i \) on the slice \(t \) (that is the number of used resources).
optimisation step, multi-BP optimisation step. Its originality consists
in separating clearly issues related to modelisation and issues connected
to optimisation. The first step (modelisation step) is necessary to model
BPs under study and so necessary for the 3 others steps. The second one
(conceptual optimisation step) makes it possible to build the best BPs as
possible, consistent and normalised (in regards to norms, objectives and
indicators). It is an optional step, since it is not necessary to achieve
operational optimisation. It is, though, strongly recommended because
it is not very judicious to try to affect resources and competencies on a
BP which is not correctly built. The third one (operational optimisation)
is probably the main one. Its goal is to improve the performances and
behaviour of BPs by optimising resources and competencies locations.
The main advantage of this 2 steps optimisation is to improve BPs
quality as well as better control their evolution.

This method was validated on administrative BPs. It also works on
industrial BPs, under condition to take into account (during the opera-
tional optimisation) issues of breakdowns and maintenance of machines
(by using complementary tools), issues which were not presented in this
paper. This research is going to be extended by introducing data mining
techniques in the conceptual step in order to find out more efficient
optimising rules. We would like to thank the CNEDI 06 and more
particularly M.P. Bourget who made this research possible.

BIBLIOGRAPHY

[Aler 2002a] Ricardo Aler, Daniel Borrajo, David Camacho, and
Almudena Sierra-Alonso. A knowledge-based approach for business
process reengineering. SHAMASH, Knowledge Based Systems,

genetic programming to learn and improve control knowledge.

rewriting. Journal of Artificial Intelligence Research, 15:207–261,

based learning for planning. In Working notes of the IJCAI’01
Workshop on Planning with Resources, pages 9–17, Seattle, WA
(USA), August 2001, IJCAI Press.

In AI ’98: Proceedings of the 15th Conference of the American
Association for Artificial Intelligence, pages 380–387, Chicago, IL,

[Iwamoto 1994] Masahiko Iwamoto. A planner with quality goal and its
speedup learning for optimization problem. In K. Hammond,
editor, Proceedings of the Second International Conference on
Artificial Intelligence Planning Systems (AIPS94), pages 281–

Models and Methods, ISBN : 0-471-38004-0, Wiley Higher Edu-
cation

Management: Strategy and Analysis (6th Edition), Prentice Hall

[Nareyek 2001] Alexander Nareyek, editor. Working notes of the
IJCAI’01 Workshop on Planning with Resources, Seattle, WA
(USA), August 2001, IJCAI Press.

[Williamson 1994] Mike Williamson and Steve Hanks. Optimal plan-
ing with a goal-directed utility model. In K. Hammond, editor,
Proceedings of the Second International Conference on Artificial
Intelligence Planning Systems (AIPS94), pages 176–181, Chicago,

Figure 17. Table of Flows Units Treated After Each Slice

<table>
<thead>
<tr>
<th>TREATED FLOWS UNITS</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>15</td>
<td>36</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>8</td>
<td>16</td>
<td>22</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>f2</td>
<td>38</td>
<td>58</td>
<td>14</td>
<td>28</td>
<td>40</td>
<td>51</td>
<td>63</td>
<td>73</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>f3</td>
<td>35</td>
<td>18</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>67</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f4</td>
<td>44</td>
<td>57</td>
<td>85</td>
<td>68</td>
<td>50</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f5</td>
<td>17</td>
<td>24</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f6</td>
<td>4</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>18</td>
<td>70</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f7</td>
<td>4</td>
<td>22</td>
<td>39</td>
<td>31</td>
<td>25</td>
<td>40</td>
<td>47</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f8</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>28</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>23</td>
<td>23</td>
<td>15</td>
<td>71</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>f10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>43</td>
<td>55</td>
<td>81</td>
<td>62</td>
<td>32</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>f11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>35</td>
<td>70</td>
<td>140</td>
<td>210</td>
<td>280</td>
</tr>
</tbody>
</table>

Figure 18. Table of Used Competencies and Resources on Each Slice

<table>
<thead>
<tr>
<th>RESOURCE</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 (C2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R2 (C1, C2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R3 (C4)</td>
<td>0</td>
</tr>
<tr>
<td>R4 (C1, C4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R5 (C4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R6 (C2, C3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R7 (C3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R8 (C2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R9 (C4)</td>
<td>0</td>
</tr>
</tbody>
</table>
Related Content

Blended Learning Models
www.irma-international.org/chapter/blended-learning-models/13601/

Using the Railway Mobile Terminals in the Process of Validation and Vending Tickets
www.irma-international.org/article/using-railway-mobile-terminals-process/3174/

Enterprise Resource Planning System: Issues and Implementation
Edward T. Chen (2009). Emerging Topics and Technologies in Information Systems (pp. 102-114).
www.irma-international.org/chapter/enterprise-resource-planning-system/10192/

Enterprise-Wide Strategic Information Systems Planning for Shanghai Bell Corporation
www.irma-international.org/chapter/enterprise-wide-strategic-information-systems/6378/

Deutsche Bank: Leveraging Human Capital with the Knowledge Management System HRBase
www.irma-international.org/article/deutsche-bank-leveraging-human-capital/44573/