I DEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5002

Refactoring UML Class Diagram

ClaudiaPereira
INTIA, Facultad de Ciencias Exactas, Universidad Nacional del Centro de laProvinciade Buenos Aires, Tandil, Argentina,
cpereira@exa.unicen.edu.ar

LilianaFavre
INTIA, Facultad de Ciencias Exactas, Universidad Nacional del Centro delaProvinciade Buenos Aires , Tandil, Argentina, CIC (Comisién de
Investigaciones CientificasdelaProvinciade BuenosAires), [favre@exa.unicen.edu.ar

LilianaMartinez
INTIA, Facultad de Ciencias Exactas, Universidad Nacional del Centro de laProvinciade Buenos Aires, Tandil, Argentina,
Imartine@exa.unicen.edu.ar

ABSTRACT

Refactoring is now seen as an essential activity during software
development and maintenance. In this paper, we describe a “rules +
strategies’ approach that allows the refactoring on UML static models
together with OCL contracts. Our focus is on behavior-preserving
model-to-model transformations. We also describe an experimental tool
prototype to restructure object-oriented hierarchies.

1- INTRODUCTION

Refactoring is a change to the system that leaves its behavior
unchanged, but enhances some nonfunctional quality factors such as
simplicity, flexibility, understanding and performance. Refactoring is
now seen as an essential activity for handling software evolution. When
extreme programming is used, it is often necessary to restructure already
existing models and code (Beck, 2000). Also, legacy systems require
refactoring in order to make it more understandable to future changes
in flexible requirements.

UML CASE tools provide limited facilities for refactoring on
source code through an explicit selection made by the designer. However,
it will be well worth thinking about refactoring at the design level. The
advantage of refactoring at UML level is that the transformations do
not have to be tied to the syntax of a programming language. This is
relevant since UML is designed to serve as a basis for code generation
with the new Model Driven Architecture. The current UML 1.5
metamodel is insufficient to maintain the consistency between restruc-
tured design models, various design views and implementations. This
situation might change in the future since UML evolves to version 2.0
(OMG, 2003).

In this paper, we are concerned about refactoring on UML class
diagrams and traceability of changes in a model. We propose a transfor-
mational system for refactoring UML static models based on the “rules
+ strategies’ approach. The goal of this transformational system is to
provide support for small refactorings by applying semantics-preserv-
ing transformation rules. The basic idea is to obtain a model with the
same behavior. Transitions between versions are made according to
precise rules based on the redistribution of classes, variables, operations
and associations across the diagram in order to facilitate future adapta-
tions and extensions. During the transformation process, we need
strategies to guide the application of transformation rules and which
allow us to construct UML diagrams with improved quality factors. To
demonstrate the feasibility of this approach, a tool prototype that
assists in the refactoring of object oriented hierarchies was imple-
mented.

This paper is structured as follows. In Section 2, related works are
given. Section 3 presents

the transformation system: some definitions and a set of rules and
strategies to restructure classes and associations. Section 4 presents an

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour.

example and Section 5 describes an experimental refactoring prototype.
Finally, Section 6 concludes and discusses future work.

2- RELATED WORK

The first relevant publication on refactoring was carried out by
Opdyke (1992), showing how functionalities and attributes can migrate
among classes, how classes can join and separate using a class diagram
notation (subset of current UML). Roberts (1999), describing techniques
based on refactoring contracts, completed this work.

Fowler et al. (1999) informally analyze refactoring techniques on
Java source code, explaining the structural changes through examples
with class diagrams. Fanta & Rajlich (1998) and Fanta & Rajlich (1999)
study refactoring of C++ code.

Several approaches provide support to restructure UML model. In
(Gogolla & Ritchers, 1998) advanced UML class diagram features are
transformed into more basic constructions with OCL constraints. Evans
(1998) proposes a rigorous analysis technique for UML class diagrams
based on deductive transformations. In (Sunyé et al., 2001) a set of
refactorings is presented and how they may be designed to preserve the
behavior of UML model is explained. Philipps & Rumpe (2001)
reconsider existing refinement approaches as a way to formally deal with
the notions of behavior, behavior equivalence and behavior preserva-
tion. Whittle (2002) investigates the role of transformations in UML
class diagrams with OCL constraints. Demeyer et al. (2002) provide an
overview of existing research in the field of refactoring. Porres (2003)
defines and implements model refactorings as rule-based transforma-
tions. Van Gorp et al. (2003) propose a set of minimal extensions to
UML metamodel, which allows reasoning about refactoring for all
common object oriented languages.

Tools are available to automate several refactoring aspects. For
example, Guru (Moore, 1995) is a fully automated tool to restructure
inheritance hierarchies of SELF objects preserving behavior. Smalltalk
Refactoring Browser (Roberts et al., 1997) is an advanced browser for
VisualWork which automatically carries out transformations which
preserve behavior. There is a tendency to integrate refactoring tools
into industrial software development environments. For example,
Together ControlCenter (TogetherSoft, 2003) applies code refactoring
on user requirements.

3- THE TRANSFORMATION SYSTEM
3.1. Definitions

We describe those basic notions and notations of UML static
models that we need for the remainder of the paper.

A UML class diagram is represented in terms of classes and
associations:

Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

classDiagram = (classes, associations) where

classes = set of classes belonging to classDiagram
associations = set of associations belonging to classDiagram

class = (className, P, A, OP, |, ASH) where

P= set of formal parameters
A={(N, T, A)/ N= attribute name,
T = attribute type,
A = access type (private/protected/public) }
OP = {(N, A, P, R, Pre, Pos) /
operation name,
access type,
{(Np, Tp)/ Np = parameter name,
Tp = parameter type },
R = return type,
Pre = {pre/ pre = OCL constraint},
Pos = {pos / pos = OCL constraint } }

N
A
=)

I={1 /1 = OCL constraint }

AS= {(assocName, className)/ assocName = association name,
className = name of the associated class }

H= {(P, A, Pa) / P = super class name,

A= inheritance type (private/protected/public),

Pa= set of parameters}

association = (assocName, assocEnd,, assocEnd, OclConstraints)
assocEnd = (className, rolName, multiplicity, assocType, visibil
ity, navigability)

We assume the following functions:

set-attr: OP -> A

maps each mMEOP onto a set of attributes directly or indirectly referenced
inm

set-oper: OP -> OP

maps each mé& OP onto a set of operations directly or indirectly
referenced in m

set-assoc: OP -> AS

maps each mé& OP onto a set of associations directly or indirectly
referenced in m

Given two operations ml and m2 belonging to different classes
equiv-oper : O x O -> {true, false}

determine if ml and m2 are equivalent or not.

Given two attributes al and a2 belonging to different classes
equiv-attr: A x A -> {true, false}

determine if al and a2 are equivalent or not.

3.2. Transformation Rules

This section presents transformation rules on UML/OCL class
diagrams. First, a kernel of rules for refactoring classes is described. Next,
a number of examples of transformation rules for associations is
presented.

3.2.1. Refactorings: Dealing with inheritance

We define a set of transformation rules on UML static diagrams
that allows transforming a hierarchy of classes. The transformations
preserve the consistency and functional equivalence of the resulting
hierarchy. Figure 1 shows the main rules.

Folding:
It joins two classes which have a direct inheritance relationship
obtaining a new class gathering the behavior of both. The goal of this

Innovations Through Information Technology 507

Figure 1. Refactoring Class Hierarchies

T = 1]

a- Felding

|::>

k- Abstraction

(2] [B] = []

c- Composition

d- Factoring

|::>

e- Unfolding by attributes

rule is to reduce the level of a class hierarchy in those cases where there
is no particular interest in the behavior of a base class, either because
it is an abstract class or because the amount of operations of the class
does not justify having another level in the hierarchy.

Abstraction:

It divides the behavior of a class generating two classes which
maintain a direct inheritance relationship. By the application of this
rule, a new base class can abstract the more general behavior identified
inside another class.

Composition:

It gathers two classes without inheritance relationship to each
other in anew one. Thisrule can be useful to group behavior and to reduce
the multiple inheritances.

Factoring:

It factors equivalent operations in a new base class starting from
two classes without inheritance relationship to each other. This rule
eliminates duplicated operations and attributes.

Unfolding by attributes:

It divides the behavior of a class, generating two classes which
maintain a direct inheritance relationship. Such classes arise from
carrying out a partition of the attributes in two disjoint subsets. This rule
is useful when operations do not reference simultaneously to all the
attributes, but only make reference to some of them.

3.2.2. Refactoring Strategies

The restructuring rules are basic units of transformation, i.e.,
starting from them particular sequences can be built to solve situations
presented in a hierarchy which is wanted to improve. These predefined
sequences are denominated restructuring strategies. They allow applying

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

508 2004 IRMA International Conference

a sequence of rules without having to execute the same ones in an
independent form. Next, some of them are described.

Composition without duplication of operations:

It integrates the behavior of two non-generic classes eliminating
the duplication of operations, since a single class is obtained which
gathers the whole behavior without duplication of those operations that
were equivalent. The sequence of rules defining this strategy is: Factoring
= Composition = Folding.

Factoring and joint of derived classes:

It factors equivalent operations in an existent base class and
integrates the behavior of two non-generic classes that derive from that
base class. The sequence of rules which defines this strategy is: Factoring
= Composition = Folding.

Factoring of equivalent operations into a base class:

It is useful in those cases where the existence of equivalent
operations isidentified in derived classes and it is wanted to abstract such
a behavior to the existent ancestor class. It reduces the duplication of
operations in the derived classes and integrates the common behavior
to the ancestor class. The sequence of rules is: Factoring = Folding.

Abstraction of operations into a base class:

It promotes behavior to the ancestor class starting from a subset
of operations without creating new classes and without increasing the
amounts of hierarchy levels. The sequence of rules is: Abstraction =
Folding.

Unfolding by attributes into a base class:

It promotes behavior to the ancestor class starting from a subset
A of attributes, without creating new classes and without increasing the
amounts of hierarchy levels. The sequence of rules is: Unfolding (A) =
Folding.
3.2.3. Refactorings: Dealing with Associations

Some transformation rules dealing with associations are described
below and they are shown in Figure 2.

Figure 2. Refactoring Associations

a- Adding a transitive association

Bkt

b- Deleting a transitive association

a a
i8] = (A F"f5]

c- Substitution of an association

a
N e KN
a [—
[& F——=l5] (B]

d- Promotion of an association

il
e A

e- Joint of unidirectional associations

L8 |

Adding a transitive association:

Given an association between classes A and B and an association
between classes B and C, an association may be derived between A and
C, determining the appropriate association type, the multiplicities and
the navigability of each association end. (Whittle, 2002)

Deleting a transitive association:

Given an association between classes A and B, an association
between classes B and C, and an association between A and C, the
transitive association between A and C may be deleted (Whittle, 2002)

Substitution of an association:

Given an association R, it may be substituted with a less constrained
association of the same name, i.e., in any association R, an association
end E with multiplicity multl may be substituted with an association end
E with multiplicity mult2, where multl < mult2. (Evans, 1998)

Promotion of an association:

Given an association R with multiplicity multl (connected to a
class A) and multiplicity mult2 (connected to a class B), if B is a subclass,
then R may be ‘promoted’ to the superclass of B with the condition that
its multiplicity with A after the transformation is optional, i.e. 0€ multl.
(Evans, 1998)

Joint of unidirectional associations:

Two unidirectional associations with navigability in opposite
direction may be joined in a plain bidirectional one (Kollmann &
Gogolla, 2001).

3.3. Defining rules
Transformation rules are denoted by

|
— JcC
(0]

with input scheme I, output scheme O and applicability condition C.
All schemes in transformation rules are supposed to be syntacti-
cally valid and context correct. Within applicability conditions, syntac-
tic and semantic ones can be distinguished.
As an example, the factorization rule definition is shown.

Input

. class (A, P,, A,, M, 1, AS, H,)

. class (B, Py, Ay, M, | 5, AS,, Hp)

. SetA = {(al,a2) where alE A A a2€B A al.T =a2T A alA =
a2.A A equiv-attr(al,a?)}

. M ={(mn)/ mEM, A nEM, A equiv-oper(m,n) }

Applicability Conditions

. Let A and B be classes without inheritance relationship between
them.

. Each parameter of class A corresponds with an only parameter
of class B and vice versa, i.e.,, PA = PB.

. A subset of attributes of A isrelated in a one-to-one way to a subset

of attributes of B since its behavior is the same in both classes.
SetA = {(al,a2) where alEe A N 22€B N al.T=a2T A al.A =
a2.A A equiv-attr (al,a2)}

. M =
Output
. class (C, P, A, M, I, AS., H)) where:
P.=P,,
Ho=H, UH,.
v (m,, nj) M: equiv-oper(m. , n) =m cM_ A

(V'm, € set-oper (m), m,e M) A
Va € set-attr(m,), a € A_ A (a.A = protected A a.A = public)
ANV as € set-assoc(m,), as € AS.)
that is to say, given an operation m, € M, and another
operation n e M, equivalent to the first one:

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

1. Move m, up to the set of operations of the class C together
with all operations referenced directly or indirectly in m.

2. Move all attributes referenced directly or indirectly in m. up
to the set of attributes of C and modify their access (public or
protected)

3. Move all associations referenced in m. up to the set of
associations of C.

. class (A", P,, A ,, M, |,,AS,, H,) where:
P.=P,
A=A, —A,
M, ={mmeM, Ame M}
=1,
AS, =AS, -AS,
H, ={(C, public, P)}

IfA, =@ AM, = then the rule does not generate class A’. The
inheritance of the direct descendants of A’ is modified, i.e., the
descendants of A’ will become direct descendants of C.

. class (B', P, Ay, Mg, I, AS,, Hy) where:
P, =P,
A, = A, - A, where A is the set of attributes of B that
correspond to attributes of A which were factored to C, i.e.:
A,={vive A, A 3 parA= (vl,v) € SetA suchthat vle A}
Mg={n/n € M_a =3 m e M. equiv-oper(m,n)}, i.e., the
operations of class B which did not have an equivalent
operation in class A which has been factored to the new class
C.
Iy =1,
AS, =AS, - AS,
Hg. = {(C, public, P_)}

If A, =@ A Mg = then the rule does not generate class B'. The
inheritance of the direct descendants of B’ is modified, i.e., the
descendants of B’ will become direct descendants of C.

4- AN EXAMPLE

The class diagram given in Figure 3.a. is a simple model of a
graphical hierarchy for a means of transport. There is an associations
between Bus and Engine and another between Truck and Engine.

The first step of the refactoring process consists in detecting
possible restructurings. First, a set of operations M, with equivalent
behavior is detected:

M = {(stop, stop), (brake, brake), (speedUp, speedUp)}

Next, a set of attributes SetA of both classes which correspond with
each other is also detected:

SetA = {(speed, speed), (maxSpeed, maxSpeed)}

The requirements for the application of the rule of class refactoring
are established. The necessary transformations are applied if the
designer approves it. Most of the transformations are carried out in an
automatic way; however, the designer intervention is sometimes re-
quired.

The application of the factoring rule leads to:

. Create a base class

. Rename the generated base class as Highway (given by the
designer)

. Make the classes Bus and Truck subclasses of Highway

. Move operations m, T M up to Highway

. Move attributes a | SetA up to Highway

. Replace the associations Truck-Engine and Bus-Engine by an
association Highway-Engine, since the associations are refer-
enced in the factored operations and they have the same charac-
teristics.

Innovations Through Information Technology 509

Figure 3. Refactoring Class Diagram

Bus Engine Truck
speed: double Engine engre Speed:dou‘ble
maxSpeeddoLble ™ acceerate() t e dmb\;adwb‘e

irt
prssergers | decelerdz() capadity: double
stop
birake() sHop
speedUp() brake()
addStation]c: Station) Station speedlpl)
= ations loadFreighticdouble)
|—.. urloadFreight (cdouble)
Has 7= .
Buz: stop() Trurk o
post: gpeed =0 post: speed =0
Bz braker] Truck: brake0
e spesd=0 pre: speed=0

pogt: result=engine. decelerste()
pogt: speed=speedi@phe

post: resut=ergine decelerstel)
post speed=speed@pre

Teuck speedl gy
pre: speed = maxSpesd

pogt resut=enying accd erate)
speed =specd@pre

Buz- speedl gy

pre: speed = maxspeed

post: result=engine accelerstel)
pogt: speed= speedi@pre

Bus: addstationrs Station).
e not stations Hncludess)

pres load + == capacity
pogt: stations=stations @pre Sincuding’s)

post: catge = cargaEpre + o

pres load - ¢ = = capacity
post: catgs = cargsEpre-

- Original UML Model

Buz
Stations Ssize ==2

o

HigHatay-vehide
Engire
EEEn Engine
M peeddouble
P acoe eratel)
stopl decelersel)
rake()
speedlp()
[1
Bius Truck
load: double

passeryers: it

capacty: double
cdiStation (s Stat R ————
deStation (= Stalion loadFreight(z daukle)

unnadFreight (edodle)

Bus: acuista St
pre: not stations Hncudes(s)
post: satione=dations@pre “induding =)

post: speed =0

Highiay-vehicle:: brakel

pre: spesd=0

post: result = engine decelerste)
postspeed = speedi@pre

Buz
Stations Ssize==2

Truck:: loadFreighttc double)
pre: load + == capacity

i Mshirde POS CAtla = CRrgaiEnre + ©
pre: speed = maxSpeed
post: reault = enging acoelerste)

post: speeds speedd@pre pre: load - ¢ = = capacity

pog catya = carga@pre -
b-Fina UML Model

Figure 3.b. shows the resulting diagram. The transformation system
allowed detecting two classes, originally not related, which are variations
from the same general notion and may be moved up into a common
ancestor. The resulting model shows a more advantageous design due to
the elimination of duplicated attributes, operations and associations.

5. EXPERIMENTAL REFACTORING PROTOTYPE

To demonstrate the feasibility of this approach, a prototype which
assists in the refactoring on object oriented hierarchies in C++ was
implemented.

The prototype implements a small, rather powerful set of basic
transformation rules (folding, unfolding, abstraction, composition,
factorization) and the strategies presented in section 3.2.2.

In this approach, mechanical tasks are performing model transfor-
mations, verifying conditions of transformation rules and keeping track
of the development process. On the other hand, typical creative aspects
are the selection of rules and strategies. The prototype could store the
history of the refactoring. This history serves as a detailed documen-
tation and is the key aid to traceability. Developments are recorded
automatically and could be replayed in order to accommodate changes.

The set of transformation rules was developed in Mathematica. A
detailed description may be found in (Enriques, 2002).

6- CONCLUSIONS

This work presents a rigorous “rules + strategies” approach for the
refactoring on UML static models. Our focus is on behavior-preserving
model-to-model transformations. Transitions between versions are
made according to precise rules based on the redistribution of classes,

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

510 2004 IRMA International Conference

variables, operations and associations across the diagram in order to
facilitate future adaptations and extensions. Most of the transforma-
tions can be undone, which provide traceability in model refactoring.

A formal semantics was developed for a subset of UML metamodel
which can be used to control the impact of refactorings.

Although the set of rules allows doing quite a number of interesting
refactorings, it is limited since it does not focus on transformations
which involve different UML views. Also, a number of extension rules
associated to design patterns are currently investigated.

An experimental tool prototype to restructure object oriented
hierarchies was described. It could be refined to be a practical tool for
refactoring.

REFERENCES

Beck, K. (2000) Extreme Programming explained. Addison-
Wesley.

Demeyer, S., Du Bois, B., Stenten, H. & Van Gorp, P. (2002).
Refactoring: Current Reasearch and Future Trends Language Descrip-
tion, Tools and Applications. (LDTA 2002).

Enriques, S., Mariezcurrena, C. & Ortega, M. (2002). Object
Oriented Hierarchies Refactoring. Undergraduate thesis, TR 287.
Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina.

Evans, A. (1998). Reasoning with UML Class Diagrams. Workshop
on Industrial Strength Formal Method, |IEEE Press.

Fanta, R. & Rajlich, V. (1998). Reengineering an Object Oriented
Code. Proc. of |EEE International Conference on Software Mainte-
nance, 238-246.

Fanta, R. & Rajlich, V. (1999). Reestructuring Legacy C Code into
C++. Proc. of |EEE International Conference on Software Mainte-
nance, 77-85.

Fowler, M. (1999). Refactoring: Improving the Design of Existing
Programs. Addison-Wesley.

Gogolla, M.& Richters, M. (1998). Transformation Rules for UML
Class Diagrams. Proc UML’ 98 Workshop, Springer-Verlag, Berlin, 92-
106.

Kollmann, R. & Gogolla, M. (2001). Application of UML Associa-
tions and Their Adornments in Design Recovery. 8" Working Confer-
ence on Reverse Engineering, |IEEE, Los Alamitos.

Moore, 1. (1995). Guru — A tool for Automatic Restructuring of Self
Inheritance Hierarchies. Tools USA 95 (Technology of Object-Oriented
languages and Systems, Tools 17), 267-275.

OMG (2003) Unified Modeling language Specification, v. 1.5.
Object Management Group. Available at www.omg.org.

Opdyke, W. (1992) Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, Urbana-Champaign.

Philipps, J. & Rumpe, B. (2001). Roots of refactoring. Proc. 10"
OOPSLA Workshop on Behavioral Semantics, Tampa Bay, Florida,
USA.

Porres, 1. (2003). Model Refactorings as Rule-Based Update Trans-
formations. Proc. of <<UML 2003>>, Springer Verlag. Available at
www.tucs.fi/Publications

Roberts, D., Brant, J. & Johnson, R. (1997). A refactoring tool for
Smalltalk, Theory and Practice of Object Systems, Vol 3, N° 4.

Roberts, D. (1999). Practical Analysis for Refactoring, PhD thesis,
University of Illinois.

Sunyé, G., Pollet, D., LeTraon & Jézéquel, J. (2001). Refactoring
UML Models. Proc. UML 2001, Lecture Notes in Computer Science
2185, 134-138.

Whittle, J. (2002) Transformations and Software Modeling Lan-
guages: Automating Transformations in UML. Proc. of <<UML 2002>>
- The Unified Modeling Language. Lecture Notes in Computer Science
2460 (eds. J. Jezequel; H. Hussman), Springer-Verlag, 227-241.

TogetherSoft, Control Center (2003). Available at
www.togethersoft.com

Van Gorp, P., Stenten, H., Mens, T. & Demeyer, S. (2003).
Towards automating source-consistent UML Refactorings. Proc. of
<<UML 2003>>, Springer Verlag. Available at win-www.uia.ac.be/u/lore

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/refactoring-uml-class-diagram/32412

Related Content

The Influence of Structure Heterogeneity on Resilience in Regional Innovation Networks
Chenguang Li, Jie Luo, Xinyu Wangand Guihuang Jiang (2024). International Journal of Information
Technologies and Systems Approach (pp. 1-14).
www.irma-international.org/article/the-influence-of-structure-heterogeneity-on-resilience-in-regional-innovation-
networks/342130

Hindi Text Document Classification System Using SVM and Fuzzy: A Survey

Shalini Puriand Satya Prakash Singh (2018). International Journal of Rough Sets and Data Analysis (pp. 1-
31).

www.irma-international.org/article/hindi-text-document-classification-system-using-svm-and-fuzzy/214966

Cryptanalysis and Improvement of a Digital Watermarking Scheme Using Chaotic Map
Musheer Ahmadand Hamed D. AlSharari (2018). International Journal of Rough Sets and Data Analysis
(pp. 61-73).
www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-
map/214969

The Optimal Workforce Staffing Solutions With Random Patient Demand in Healthcare Settings
Alexander Kolker (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 3711-
3724).
www.irma-international.org/chapter/the-optimal-workforce-staffing-solutions-with-random-patient-demand-in-healthcare-
settings/184080

The WIMAX Network Solutions for Virtual Enterprises Business Network

Sebastian Marius Rosu, George Dragoiand Bujor Pavaloiu (2015). Encyclopedia of Information Science
and Technology, Third Edition (pp. 6327-6338).
www.irma-international.org/chapter/the-wimax-network-solutions-for-virtual-enterprises-business-network/113088

http://www.igi-global.com/proceeding-paper/refactoring-uml-class-diagram/32412
http://www.irma-international.org/article/the-influence-of-structure-heterogeneity-on-resilience-in-regional-innovation-networks/342130
http://www.irma-international.org/article/the-influence-of-structure-heterogeneity-on-resilience-in-regional-innovation-networks/342130
http://www.irma-international.org/article/hindi-text-document-classification-system-using-svm-and-fuzzy/214966
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/chapter/the-optimal-workforce-staffing-solutions-with-random-patient-demand-in-healthcare-settings/184080
http://www.irma-international.org/chapter/the-optimal-workforce-staffing-solutions-with-random-patient-demand-in-healthcare-settings/184080
http://www.irma-international.org/chapter/the-wimax-network-solutions-for-virtual-enterprises-business-network/113088

