
Information Technology and Organizations 1095

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
Proxy servers are getting more and more important today. They provide

web page caches for users to browse quickly, and also reduce unnecessary
network traffic. However, users can’t browse web pages with the wrong URL.
Sometimes we just want to get some information about some subjects, the
proxy server couldn’t help us at all. Most people often use search engines to
find data, but they still have to type the correct URLs of search engines. We
actually need the proxy server with the ability of “Interactive URL Correc-
tion”, which means the proxy server could correct the URL request, and take
the users to where they want to browse, or send back some possible URLs.
Users simply enter one word “google”, or even “goggle”, and then will eventu-
ally be taken to “www.google.com”. To accomplish the URL correction, we
have applied URL preprocess and approximate URL matching technique into
proxy server. In this paper, we implement the system on the “squid” proxy
system , and use “edit distance” as the URL error measurement. Additionally,
we also list the limitation of proxy parameters and the benefits of our system.

INTRODUCTION
With the rapid expansion of the World Wide Web (WWW) too many

web-based applications had caused serious performance degradation on the
Internet. Caching is the process of storing web elements (pages, files, images)
on proxy servers. The use of caching has proliferated because it reduces bottle-
necks. The Internet Caching Resource Center (www.caching.com) estimates
that caching can reduce the need for bandwidth by at least 35 percent. Conse-
quently, the proxy servers had been widely deployed to reduce the bandwidth
for the same “web page” requests; proxy server could accelerate the browsing
rate by storing current web pages for the future requests. When some web
pages are very popular, the proxy server only needs to download them once,
then users could quickly browse these pages from the proxy. Nowadays, proxy
server becomes necessary for the WWW community.

When proxy server receives a web page request (called “URL request”),
it first matches all web pages in its native database. If the URL request is
correct (by the DNS lookup), the proxy server immediately sends the requested
page back to the user. Otherwise it has to access the requested page through
the Internet, and then sends the page back and stores it in its native database.
However, this is inconvenient and insufficient for users. When users browse
web pages, they sometimes enter the wrong URL or just guess one URL for the
product or company name. For example, we often enter the URL
(“www.starbucks.com”) for the company “Starbucks”. But when we enter the
word with some errors, for example “www.starbuck.com”, the proxy will re-
turn error messages to us, and doesn’t help us any more. Users have to correct
the URL by themselves.

Most people often use search engines to find data, but they still have to
enter correct URLs of search engines. We actually need to have the proxy
server with the ability of “Interactive URL Correction”, which means the proxy
server could correct the URL request, and take the users to where they want to
browse, or send back some possible URLs for users to choose the correct URL
by simply one click. Users could just enter one word “google”, or error word
“goggle”, and then will be taken to “www.google.com”.

To accomplish the URL correction, we have applied URL preprocess
and approximate URL matching technique into proxy server, so that users
could just enter some important names (maybe with some errors) to browse
the web pages they want. Normally, the proxy server works as usual when the

Interactive URL Correction for
Proxy Request
Kai-Hsiang Yang, Chi-Chien Pan, and Tzao-Lin Lee

Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

{ f6526004, d5526001, tl_lee}@csie.ntu.edu.tw

URL request is correct. However if proxy server discovers the URL request is
non-existent, it first performs the URL preprocess to get the important part of
URL, and then performs the approximate URL matching to obtain some ap-
proximate URLs, and sends back to the users. Users could see the approximate
URLs listed in their browsers and just simply click the correct URL to browse
the web page. This is very convenient for users to browse on the Internet.

In this paper, we choose “edit distance” as the URL similarity measure-
ment of two URLs, because it has a clear definition and is also widely used in
many fields of applications. Furthermore, we have designed one algorithm to
utilize three filter conditions [14] based on n-gram technique to perform the
URL correction.

This paper is organized as follows: Section 2 presents related work, Sec-
tion 3 lists some basic concepts about our method, Section 4 outlines the de-
sign of the URL correction, Section 5 presents the implementation environ-
ment and results, and the last section is the conclusion.

RELATED WORK
Web tracking and caching is highly active research area. A lot of track-

ing studies analyze the request rate, number of requests, the effects of cookies,
aborted connections, and persistent connections on the performance of proxy
caching [2, 3].

There has also been extensive work on cooperative Web caching as a
technique to reduce access latency and bandwidth consumption. Cooperative
Web caching proposals include hierarchical schemes like Harvest and Squid
[4, 5], hash-based schemes [6], directory-based schemes [7] and multicast-
based schemes [8].

For the approximate matching field, many researches have been pub-
lished. For two strings of length n and m, there exists a dynamic programming
algorithm to compute the edit distance of the strings in O(nm) time and space
[9], and improvements to the average and worst case have appeared [10, 11].

In [1], they solve the problem of approximate string joins in a database,
using n-gram as index stored in database and using three filter conditions for
quickly joins. In the field of database, several indexing techniques proposed
for the “approximate string matching” problem, however, such techniques have
to be supported by the database management system [12].

BASIC CONCEPTS
In this section, we briefly describe some basic concepts about URL pre-

process and URL approximate matching technique.

Edit Distance (The URL Similarity Measurement)
The edit distance d(x,y) between two URLs x and y is the minimal cost

of a sequence of operations that transform x into y. The cost of a sequence of
operations is the sum of the costs of the individual operations. In this paper we
use three standard operations of cost 1 such as follows.

Insertion: inserting the letter a, Deletion: deleting the letter a, Replace-
ment or Substitution: for a≠b, replacing a by b.

URL Preprocess
Before we have to introduce the index (called n-grams) for each URL,

we perform one preprocess. The preprocess procedure prunes some common
prefixes or suffixes of each URL, such as: “www.”, “.com”, “.org”, “.gov”,
“.tw”, etc. For all URLs in proxy native database we must perform this prepro-

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

1096 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

cess first, and then start to make the n-grams of the pruned URLs. On the other
hand, we also perform the same preprocess for all URL request before match-
ing. The benefit of the procedure is that users could just type some important
parts of the URL, and they don’t need to consider what the prefix or suffix is.
The following example shows the influence.

Example [Preprocess] As Figure 1 shows, assume proxy server has three
URL strings about “starbucks” (such as: “www.starbucks.com”,
“www.starbucks.org”, “starbucks.com.tw”,) then the preprocess prunes the three
URLs to the same string “starbucks”. Therefore users could just enter
“starbucks” to find these three URLs. The improvement is very convenient for
users.

N-Grams: Indices for Approximate URL Matching
For a given pruned URL s, its n-grams are obtained by “sliding” a win-

dow of length n over the characters of s. Since n-grams at the beginning and
the end of the string have fewer than n characters from s, we introduce new
characters “#” and “$”, and conceptually extend the string by prefixing it with
occurrences of “#” and suffixing it with occurrences of “$”. Thus, each n-
gram contains exactly n characters. The concept behind using n-grams is that
when two strings a, b are within a small edit distance of each other, they must
share a large number of n-grams in common.

For any string s of length |s|, we can easily find out the number of its n-
gram is |s| + n –1. For example, the pruned URL s is “DIGITAL”, and then its
n-grams are: “##D”, “#DI”, “DIG”, “IGI”, “GIT”, “ITA”, “TAL”, “AL$”, “L$$”.
The number of 3-grams: 9 = 7 (length) + 3(n) – 1.

Filtering Technique Using N-Gram
For a large URL cache in proxy, we use three filter conditions [1] to

quickly filter out impossible URLs having edit distance less then k (k is the
error threshold of proxy). The key objective here is to efficiently identify ap-
proximate URLs before we use the “expansive” distance function to compute
their distance. These three filtering conditions are as follows:

Count Filtering: Consider strings s
1
 and s

2
, of lengths |s

1
| and |s

2
|, re-

spectively. If the equation d(s
1
, s

2
) ≤ ≤ ≤ ≤ ≤ k holds, then the two strings must have at

least (max(s1) - 1 - (k - 1)*n) the same n-grams.
Position Filtering: If strings s

1
 and s

2
are within an edit distance of k,

then a positional n-gram in one cannot correspond to a positional n-gram in
the other that differs from it by more than k positions.

Length Filtering: The last condition is that string length provides use-
ful information to quickly prune strings that are not within the desired edit
distance. If two strings s

1
 and s

2
 are within edit distance k, their lengths cannot

differ by more then k.

URL CORRECTION DESIGN
In this section we introduce our method and new proxy architecture for

the URL correction.

New Proxy Architecture
We modify the proxy architecture to perform approximate URL match-

ing, and Figure 2 shows the new architecture of proxy server. We need to make

a new “URL N-gram Index” in addition to the “web page cache” and corre-
sponding “URL cache”; the “URL N-gram Index” is the set of all n-grams of
each URL in proxy. Especially, we apply the approximate URL matching into
the situation when proxy server couldn’t get the requested page, then the proxy
server returns top 10 approximate URLs back to the user.

Index Architecture
For each web page, proxy server stores it into inside web page cache and

URL cache. Furthermore, we create the n-grams for each URL and use the set
of n-gram (G

s
) as the URL indices. We put the indices G

s
 into a large table

(called “URL N-gram Index”). The URL N-gram Index contains four fields:
1.n-gram 2.URL string length (denote L) 3.position (the position which n-
gram appears) 4.URL_ID (the unique identification of each URL).

Example [URL N-gram Index] Assume that URL string D
s
 = “HELLO”,

Length(D
s
)= |Ds| = 5, and we use the 3-grams as indices(n = 3,) then we get the

following 3-grams:
G

3,1
 = “##H”, G

3,2
 = “HE”, G

3,3
 = “HEL”, G

3,4
 = “ELL”, G

3,5
 =

“LLO”, G
3,6

 = “LO$”, G
3,7

 = “O$$”

Matching Processes
The URL correction processes using n-gram are as follows:

1. For each URL string D
s
, we produce all the n-grams of D

s.

2. Retrieve each filter list in the URL N-gram Index corresponding to each
n-gram.

3. In all filter lists, we sum the records having the same URL_ID. When the
sum is greater then the Count Filtering, the record with the URL_ID
maybe is the answer; then we check it for the Length Filtering, and
insert it into the last result list when it passes the condition.

4. Use the distance function to compute the edit distance for the records in
the last result list.

Figure 1. The preprocess prunes URL strings into some important keyword

Figure 2. The new proxy architecture

Figure 3. Matching process

Information Technology and Organizations 1097

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Some serious problems arise during these processes, especially when the
amount of record in filter lists is very large. Therefore we need an efficient
method for these merge processes. We sort records in each filter list by URL_ID
field, like the merge-sort algorithm. The following j iterations present the
method:
1. List 1 => Result List (initiation).
2. List 2 + Previous Result List => new Result List (because we sort the

records by URL_ID in lists, we can do the counting linearly in time O(n)).
3. List j + Previous Result List => new Result List.

During the merge iterations, we can easily observe that the preceding list
records also appear in the latter lists, and the space and time used for counting
increases quite substantially. For the purpose to reduce the space and time, we
sort all lists by size beforehand, and the first list has the smallest size. Figure 3
shows our searching processes and data structures.

Rank and Return
After these matching processes, we have the real distances of last few

possible URLs. Then we rank the approximate URLs by its similarity with the
requested URL; we report error messages and the top 10 URLs back to users.

IMPLEMENTATION AND RESULTS
In this section, we present the implementation environment, browser set-

ting, and parameter limitation of proxy server. Furthermore, we also describe
the performance and benefits of our implementation.

Environment
We implement our proxy server on the Linux platform (Red Hat Linux

release 6.2,) and choose the “squid” proxy system to apply URL correction
technique, because the system is an open source and widely used under most
network infrastructures. Besides, we also use the DB library developed by the
University of Berkeley to perform the b+ tree structures for the URL N-gram
Index.

Our implementations contain two parts:
(1) Index Generation

The part is responsible for generating n-grams of all URLs and making
the sorted URL N-gram Index mentioned above, and sorting lists, etc. We use
3-gram (n=3) as default in our implementation.
(2) Filter and Matching

Programs could match approximate URLs under k edit distance, and we
set k = 2 in the proxy settings.

For the distance function, we use the Levenshtein distance algorithm
[13] to compute the real distance between two URL strings.

Browser Setting
In order to have faster efficiency on browsing the web, it is necessary for

the user to set the proxy server in the web browser. This helps to make more
efficient use of bandwidth and reduce the chances of getting duplicated copies
of the same data from overseas. Two common browsers, Netscape Navigator
and Internet Explorer, have to be configured to use the proxy server; especially
in the IE browser, we have to check the check box of “Access the Internet
using a proxy server” and cancel “Bypass proxy server for local (Intranet)
addresses”. The later action is very important, because the IE browser would
automatically append local domain to the requested URL when it is just one
word; if we don’t cancel the later check box, the proxy server would not re-
ceive any URL request.

Parameter Limitation
In our implementation, the proxy server could select different param-

eters (n-gram, k error threshold) to work, however, the filters would lose their
functionality when we choose unsuitable parameters. The limitation comes
from the Count Filtering: L - 1 - (k - 1)* n > 0.. That is, our filters will lose
functions when the inequality doesn’t hold. In experiments, we choose k = 2
and n = 3 for proxy server, therefore, the filters work well for the pruned URL
strings of length L > 4. For strings of length L <= 4, we have to directly com-
pute their edit distances.

Experimental Results
We used about 500,000 URL strings to evaluate the performance of ap-

proximate URL matching, and produce more then 5,000,000 n-gram data. In
our experiments, almost approximate URL matching processes had finished
in one to three seconds; the performance of the filtering is acceptable. As our
previous research [14], we use the matching processes to perform the filtering.
However, the n value is very important for search performance. If n is too
large, the filters lose its functions, then we have to use brute force method to
check each string, and the performance decreases. If n is too small, the index
size increases, and the performance also decreases. Therefore, it is very impor-
tant to one suitable n value, and in our experience, n (three to five) is suitable
for common situations.

We could change the proxy parameters for various approximate levels
depending on different needs. On the other hand, users could just enter some
important keywords to find what they want because we first perform the URL
preprocess, and maybe users would discover some other URLs containing the
information they are interested in.

CONCLUSIONS
We successfully applied the URL correction technique into proxy server,

and this kind of proxy server will take users to a convenient environment for
browsing on the Internet. Even though users enter error URLs, they still will be
taken to the correct web pages. This is our major contribution.

To perform the URL correction technique, we make and sort the n-grams
of all URL strings, and archive a well URL correction performance. Further-
more, we list the limitation of the proxy parameters for administrators to cus-
tomize the system. Most of all, we make users a lot easier to browse the web.

To increase the practicality of the system, it should be deployed on one
bigger proxy server, such as some ISP’s proxy servers, which has a lot of web
pages and a lot of user requests.

REFERENCES
[1] L. Gravano and P. G. Ipeirotis and H. V. Jagadish and N. Koudas and S.

Muthukrishnan and D. Srivastava. Approximate String Joins in a Data-
base (Almost) for Free. In Proceedings of the 27th VLDB Conference,
2001.

[2] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web
proxy caching: The devil is in the details. In Workshop on Internet Server
Performance, pages 111-118, June 1998.

[3] A. Feldmann, R. Cacres, F. Douglis, G. Glass, and M. Rabinovich. Per-
formance of web proxy caching in heterogeneous bandwidth environ-
ments. In Proceedings of IEEE INFOCOM ’99, March 1999.

[4] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrell. A hierarchical Internet object cache. In Proceedings of the 1996
USENIX Technical Conference, pages 153-163, January 1996.

[5] Squid internet object cache. http://squid.nlanr.net.
[6] D. Karger, T. Leighton, D. Lewin, and A. Sherman. Web caching with

consistent hashing. In Proceedings of the 8th Int. World Wide Web Con-
ference, May 1999.

[7] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design considerations for
distributed caching on the Internet. In the 19th IEEE Int. Conference on
Distributed Computing Systems, May 1999.

[8] J. Touch. The LSAM proxy cache – a multicast distributed virtual cache.
In Proceedings of the 3rd Int. WWW Caching Workshop, June 1998.

[9] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. In Journal of Molecular Biology, 147: pages 195-197,
1981.

[10] R. Cole and R. Hariharan. Approximate string matching: a simpler faster
algorithm. In Proceedings of ACM-SIAM SODA’98, pages 463-472, 1998.

[11] W. Chang and E. Lawler. Sublinear approximate string matching and
biological applications. Algorithmica, 12(4/5):327-344, 1994. Prelimi-
nary version in FOCS’90, 1990.

[12] T. Bozkaya and Z. M. Ozsoyoglu. Distance based indexing for high di-
mensional metric spaces. In Proceedings of String Processing and In-
formation Retrieval Symposium (SPIRE’99,) pages 16-23, 1999.

[13] Levenshtein Distance. http://www.merriampark.com/ld.htm
[14] Chi-Chien Pan and Kai-Hsiang Yang and Tzao-Lin Lee. Approximate

String Matching in LDAP based on edit distance. In Proceedings of the
IPDPS2002 Conference, 2002.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/interactive-url-correction-proxy-

request/32259

Related Content

Mechanical Transmission Model and Numerical Simulation Based on Machine Learning
Pan Zhang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/mechanical-transmission-model-and-numerical-simulation-based-on-machine-

learning/318457

Comparative WebGIS Software Study: How to Support Users Decisions on the Best Solution to

Their Organizations
Sandra Venturaand Alcina Prata (2021). Handbook of Research on Multidisciplinary Approaches to

Entrepreneurship, Innovation, and ICTs (pp. 286-305).

www.irma-international.org/chapter/comparative-webgis-software-study/260562

Meta Data based Conceptualization and Temporal Semantics in Hybrid Recommender
M. Venu Gopalachariand Porika Sammulal (2017). International Journal of Rough Sets and Data Analysis

(pp. 48-65).

www.irma-international.org/article/meta-data-based-conceptualization-and-temporal-semantics-in-hybrid-

recommender/186858

An Efficient Source Selection Approach for Retrieving Electronic Health Records From

Federated Clinical Repositories
Nidhi Guptaand Bharat Gupta (2022). International Journal of Information Technologies and Systems

Approach (pp. 1-18).

www.irma-international.org/article/an-efficient-source-selection-approach-for-retrieving-electronic-health-records-from-

federated-clinical-repositories/307025

A Protocol for Evaluating Mobile Applications
Clare Martin, Derek Floodand Rachel Harrison (2013). Information Systems Research and Exploring Social

Artifacts: Approaches and Methodologies (pp. 398-414).

www.irma-international.org/chapter/protocol-evaluating-mobile-applications/70726

http://www.igi-global.com/proceeding-paper/interactive-url-correction-proxy-request/32259
http://www.igi-global.com/proceeding-paper/interactive-url-correction-proxy-request/32259
http://www.irma-international.org/article/mechanical-transmission-model-and-numerical-simulation-based-on-machine-learning/318457
http://www.irma-international.org/article/mechanical-transmission-model-and-numerical-simulation-based-on-machine-learning/318457
http://www.irma-international.org/chapter/comparative-webgis-software-study/260562
http://www.irma-international.org/article/meta-data-based-conceptualization-and-temporal-semantics-in-hybrid-recommender/186858
http://www.irma-international.org/article/meta-data-based-conceptualization-and-temporal-semantics-in-hybrid-recommender/186858
http://www.irma-international.org/article/an-efficient-source-selection-approach-for-retrieving-electronic-health-records-from-federated-clinical-repositories/307025
http://www.irma-international.org/article/an-efficient-source-selection-approach-for-retrieving-electronic-health-records-from-federated-clinical-repositories/307025
http://www.irma-international.org/chapter/protocol-evaluating-mobile-applications/70726

