
Information Technology and Organizations 843

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
 The paper presents an overview of the process of understanding exist-

ing information systems in order to aid system evolution and maintenance.
The outcome of the paper is largely based on the experiences gather from a
system maintenance project. The paper argues that the process of understand-
ing existing systems involves four major design abstraction levels. To achieve
the highest level of design abstraction in the hierarchy, maintainer program-
mers have to follow a defined process to gain a complete understanding of the
system structure and semantics.

INTRODUCTION
Information systems (IS) always tend to change and evolve as technol-

ogy and business rules change. Evolution of information systems is unavoid-
able, and it is a natural phenomenon. Organizations need to support systems
evolution to take advantage of the new technology and to address the changing
business rules. In the era of web-based systems and e-business, organizations
need appropriate maintenance process and resources that are required to mi-
grate their aging legacy information systems to web-enabled contemporary
systems. The need for a system evolution emerges from various issues such as
changes of business rules, emerging new technology, need for new functional-
ity, or fixing defects in the systems and so on.

 A major component of system evolution is to comprehend the under-
lying design rationale of IS at various levels. This paper explores issues of
recreating design artefacts at various levels of abstractions. Current practices
of system comprehension activities revolve around ad hoc patching which do
not follow any defined methodology. A more defined formalism describing
various levels of design artefacts and the abstraction process to recreate the
underlying design knowledge is required to enable maintainers a clear under-
standing of the system.

 The motivation of the work reported in this paper was actually gener-
ated from a maintenance project of a business application system. The candi-
date system was a small Inter Bank Reconciliation System (IBRS) used in a
developing country in Asia. The organization later decided to transform the
system into a more portable and efficient programming language platform keep-
ing the entire functionality of the system intact. One of the authors of this
paper was assigned the responsibility to lead the project. It involved consider-
able re-engineering task. The maintenance experience with the project reported
in (Khan et al,. 1996; Khan and Skramstad, 2000; Khan et al., 2001) has
motivated us to propose a program understanding process in this paper.

 The paper proceeds as follows. In the next section, we outline the ex-
periences with the maintenance process. We describe the issues related to pro-
gram understanding process in section 3. The paper concludes in section 4.

EXPERIENCE WITH THE MAINTEANCE PROJECT

Beginning of the maintenance project with IBRS, it was learned that no
design documents of the candidate system were produced during the develop-
ment process. The system did not follow any coding standard, and no design
documentation was available. One of the original programmers involved in
the development of the system provided several informal diagrams about the
system dependency. We combined the information gathered from her with the
informal scenario that we already obtained to grasp the overall structure of the
system. We tried to trace manually the flow of execution of the system to keep
track of each function as reported in Khan et al., 2001.

First mental representation of the system we built was a program model
as defined in (Pennington 1987; Mayrhauser et al.1994) by identifying the
flow of control structures, call sequences, and scopes of global and shared
variables found in the source code. We tried to map the relationships among
all the scattered programming elements. This mapping process later allowed
us to reconstitute the fundamental architecture of the system as well as the
interaction of various programming components such as global and shared
variables, function calls and branching structures.

PROGRAM UNDERSTANDING PROCESS
 Based on the experience with the maintenance project, we have learned

several lessons in program understanding process:
(a) Two types of systems knowledge are required to effectively understand an

IS
(b) System knowledge can be recreated at four different levels of abstractions
(c) Maintainer programmers need to adapt defined design recovery process.

Each of the above three is discussed in the subsequent sections

System knowledge
 In general terms, there are two major types of system knowledge found

in a system: (1) syntactic knowledge (structure of the systems); and (2) seman-
tic knowledge (program functionality).

 Syntactic knowledge
 This type of knowledge is the basic building block that is extractable

from the source code. The syntactic knowledge includes for example, control
structures, hierarchy of calling structures, programming patters, data struc-
tures. This type of information is very much programming language depen-
dent.

Semantic knowledge
 This type of knowledge comprises the ultimate intentions of program,

and domain knowledge of the entire information system. This type of informa-

Recreating Design Artefacts of
Information Systems for Systems

Evolution and Maintenance
Khaled Md. Khan

University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia,
Tel: +61-2-9685-9558, Fax: +61-2-9685-9245, k.khan@uws.edu.au

Yi-chen Lan
University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia,

Tel: +61-2-9685-9283, Fax: +61-2-9685-9245, yichen@cit.uws.edu.au

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

844 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

tion is not always directly found in the source code and more difficult to be
verified its correctness. We discuss the importance of informal linguistic in-
formation in understanding the semantics of a system in the latter sections.

Levels of abstractions
 A system can appear to be in different levels of abstraction at different

stages of its existence (Hausler et al., 1990). It is noted that the program under-
standing process gradually crosses different abstraction levels from implemen-
tation towards higher levels (Harandi and Ning, 1990). We can view a system
conceptually at different levels in its existence. Program understanding is a
knowledge intensive activity, and abstracting a higher level of representation
requires abstracting of immediate lower level representation of the system in
the hierarchy.

 Figure 1 shows the hierarchical abstraction of an information system
at four different levels such as: (1) implementation level, (2) structural level,
(3) logical level, and (4) conceptual level.

Implementation level
 To understand a system into its implementation level, one must be

familiar with its language syntax and semantics. It can be derived in terms of
an abstract syntax tree and a collection of program tokens. It is the lowest level
of the system abstraction hierarchy.

Structural level
 This level represents the dependencies among the program’s different

components. Control flow diagrams, control dependencies, procedure calls
relationships, and structure charts are the examples of the structural level docu-
mentation. The syntactic knowledge specified in the previous section falls in
this level.

Logical level
 Logical level represents the logical relationship among the various

components of a system. In program understanding, it is important to under-
stand what function is provided by which part of the program. This level can
be represented as data flow and data definition graphs.

Conceptual level
 The conceptual level focuses on the application domain of the sys-

tem. It includes the problem being solved, business rules, users’ understand-
ing of the problems and so on.

Design recovery process
 Design recovery process has two phases: recreating syntactical knowl-

edge from the source code; and recreating semantic knowledge. Maintainers
first need to search for larger structural components of the system such as the
subsystem structure, fundamental data structures, and module structures based
on the analysis of source code and available design documents. Getting a con-
ceptual view (a mental model of a program) of a system requires a representa-
tion of a program not as a text file but as a set of interrelated concepts. Syntac-
tical knowledge provides maintainers enough information to recognize semantic
knowledge of the system. Figure 2 shows the process on how the abstraction at
the conceptual level can be achieved.

Recreating syntactical knowledge
 The phase of recreating syntactical knowledge requires followings:
i) Identifying the application domain
ii) Understanding dynamic behaviour
iii) Composing the system into structural representation
iv) Collecting informal linguistic information.

Identifying the application domain
 Identifying the candidate system domain is the first step in system

maintenance. Types of functionality and the profile of the environments in
where the system being used indicates the application domain. These two in-
gredients are vital to perceive the system’s application domain.

Understanding dynamic behaviour
 The most important stage of recreating the system design is the com-

prehension of system functionality. The functionality of a program needs to be
understood before attempting to extract the internal mechanisms of the sys-
tem. This can be achieved by running the program with real data.

Composing the system into structural representation
 It is important to compose the program into larger logical units. For

languages which do not support the notion of module structure, the maintainer
must depend on their intuition, experience and design documents to establish
a conceptual boundary of the larger program structure. It is assumed that the
functions in a source code file are semantically related, and constitutes a cohe-
sive logical module (Choi and Sacchi, 1990). It is customized that program
developers generally group related functions in one source file (Choi, 1989).
The existing module structures could be constituted into larger chunk of the
system structure to represent a wholeness of the related system functionalities.
In this regard, program slicing is a well known technique that utilizes the prop-
erties of control flow to locate all instructions sets wherever in the control flow
path that invoked an event across the module boundaries. This technique of
slicing isolates individual computation threads within a program.

Collecting informal semantics information
 It is quite useful to take into consideration the informal information

structures scattered in the source code. Some natural language texts used in
the source code as comments could be used to fill the gap between the concep-
tual level and the implementation level of the system. IS maintainers can re-
trieve a wide varieties of information from the combination of informal and
formal linguistics structures in the source code. This type of information is
helpful to identify the semantic knowledge of the program. The informal lin-
guistic structures in the code such as comments, naming style and convention
of data structures and functions provide vital information on the actual pur-
poses of the data and function definitions.

Recreating semantic knowledge
Once the syntactic knowledge is created, maintainers experience and

reasoning capabilities are used as an aid to recreate the semantic knowledge of
the system. This practice heavily depends on the completeness of the syntacti-
cal knowledge recreated, programmers’ experience, intelligent guessing, and
their reasoning capabilities. Once semantic knowledge is reproduced, it is be-
lieved that maintainers’ understandings reach at the conceptual level.

CONCLUSION

 This paper focuses on the process of recreating the design rationale of
existing IS. We have argued that system understanding is a pre-requisite for
information systems evolution and maintenance. A system understanding pro-
cess requires abstraction of system knowledge at various levels in the abstrac-

Figure 1: Hierarchy of program abstraction levels

Information Technology and Organizations 845

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

tion hierarchy. In an effective maintenance process, maintainer’s understand-
ing should reach at the conceptual level of the system knowledge. The paper
also cites a design recovery framework to recreate the conceptual level of un-
derstanding of the system.

Figure 2: Design recovery process
REFERENCES

Choi, S., Sacchi, W., (1990). “Extracting the Design of large Systems”,
IEEE Software, January, pp. 66-71.

Choi, S. (1989). “Softman: An Environment Supporting the Engineer-
ing and Reverse Engineering of Huge Software Systems”, University of South-
ern California, Los Angeles 1989.

Hausler, F., el al., (1990), Using Function Abstraction to Understand
Program Behaviour”, IEEE Software, January 1990.

Khan, M. K., Rashid, M. A. and Lo, W. N. B. (1996). ‘A Task-Oriented
Software Maintenance Model’, Malaysian Journal of Computer Science, Vol.
2, December 1996, 36-42.

Khan, K., Lo, B., and Skramstad, T. (2001). Tasks and Methods for Soft-
ware Maintenance: A process oriented framework. Australian Journal of In-
formation systems, Nol. 9., no. 1, September, pp. 51-60.

Khan, K., and Skramstad, T. (2000). Software Clinic: A Different View
of Softare Maintenance. International Conf. On Information systems analysis
and synthesis, Orlando, pp. 508-513.

Mayrhauser, A. von, Vans, A. M. (1994). ‘Comprehension Processes
During Large Scale Maintenance’, IEEE Proceedings Conference on Software
Engineering, 1994, 39- 48.

Pennington, N. (1987). ‘Stimulus Structures and Mental Representations
in Expert Comprehension of Computer Programs’, Cognitive Psychology, Vol.
19, 1987, 295-341.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/recreating-design-artefacts-

information-systems/32159

Related Content

Enhancing the Mobile User Experience Through Colored Contrasts
Jean-Éric Peletand Basma Taieb (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 6070-6082).

www.irma-international.org/chapter/enhancing-the-mobile-user-experience-through-colored-contrasts/184306

Feature Engineering Techniques to Improve Identification Accuracy for Offline Signature Case-

Bases
Shisna Sanyal, Anindta Desarkar, Uttam Kumar Dasand Chitrita Chaudhuri (2021). International Journal of

Rough Sets and Data Analysis (pp. 1-19).

www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-

signature-case-bases/273727

A Comparison of Data Exchange Mechanisms for Real-Time Communication
Mohit Chawla, Siba Mishra, Kriti Singhand Chiranjeev Kumar (2017). International Journal of Rough Sets

and Data Analysis (pp. 66-81).

www.irma-international.org/article/a-comparison-of-data-exchange-mechanisms-for-real-time-communication/186859

Towards Benefiting Both Cloud Users and Service Providers Through Resource Provisioning
 Durga S., Mohan S., Dinesh Peter J.and Martina Rebecca Nittala (2019). International Journal of

Information Technologies and Systems Approach (pp. 37-51).

www.irma-international.org/article/towards-benefiting-both-cloud-users-and-service-providers-through-resource-

provisioning/218857

Towards an Intelligent System for the Territorial Planning: Agricultural Case
AMRI Benaoudaand Francisco José García-Peñalvo (2018). Global Implications of Emerging Technology

Trends (pp. 158-178).

www.irma-international.org/chapter/towards-an-intelligent-system-for-the-territorial-planning/195829

http://www.igi-global.com/proceeding-paper/recreating-design-artefacts-information-systems/32159
http://www.igi-global.com/proceeding-paper/recreating-design-artefacts-information-systems/32159
http://www.irma-international.org/chapter/enhancing-the-mobile-user-experience-through-colored-contrasts/184306
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/article/a-comparison-of-data-exchange-mechanisms-for-real-time-communication/186859
http://www.irma-international.org/article/towards-benefiting-both-cloud-users-and-service-providers-through-resource-provisioning/218857
http://www.irma-international.org/article/towards-benefiting-both-cloud-users-and-service-providers-through-resource-provisioning/218857
http://www.irma-international.org/chapter/towards-an-intelligent-system-for-the-territorial-planning/195829

