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ABSTRACT
This paper examines the objective assumptions for Data Mining Process
standardization, which simplifies integration of Information Systems with Data
Mining models. In doing so it provides an overview of the more important
characteristics of Cross Industry Standard Process Model for Data Mining
(CRISP-DM), Application Programming Interface OLE DB for Data Mining
(API OLE DB DM), and Predictive Model Markup Language (PMML).

INTRODUCTION
Information Technology development has strong effects on data resources.

In this fast rising volumes of data environment, human abilities in memory
capacities and low data complexity or dimensionality analysis cause data over-
load problem. It is impossible to solve this issue in a human manner – it takes
strong effort to use intelligent and automatic software tools for turning rough
data into valuable information [2-7,9-10]. One of the central activities associ-
ated with understanding, navigating and exploring the world of digital data is
Data Mining. It is an intelligent and automatic process of identifying and dis-
covering useful structures in data such as patterns, models and relations. We
can consider Data Mining as a part of the overall Knowledge Discovery in
Data process, which is defined as “the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data” [4],
it should support us as we struggle to solve data overload and complexity
issues.

Data mining applications have to process data of diverse nature, drawn
from different storage architectures, then use multiple data-specific explora-
tion algorithms, and present results in a variety of forms. Data mining pro-
cesses and models are used as a part of commercial Information Systems in-
cluding those in enterprise resource planing, customer relationship manage-
ment and in processing engineering and scientific data as well. With the fast-
est acceleration of online data resources in the Internet, the World Wide Web is
a natural domain for using data mining techniques to automatically discover
and extract actionable information from Web documents and services, espe-
cially in e-business. We have named those techniques as Web Mining. We also
consider text mining as a data-mining task that helps us summarize, cluster,
classify and find similar text documents.

Technological standards play an important role in Information Technol-
ogy development [7]. Now, many organizations are developing technological
standards for various aspects of data mining. Several standardization efforts
[6] are undertaken on models, attributes, application programming interfaces,
processing of remote and distributed data as depicted in Figure 1.

This issue is discussed in following chapters
Cross Industry Standard Process Model for Data Mining – CRISP DM

CRISP DM was developed in the year 2000 by a consortium of data
mining vendors and advanced users (e.g. SPSS, NCR Daimler-Benz, Mercedes-
Benz and OHRA) [3]. The CRISP-DM applies across different industry sec-
tors (e.g. automotive, aerospace, insurance) was designed to make data min-
ing projects easily adopted as a key part of business processes. The main as-
sumption in this model preparation was its neutrality with respect to industry,
method, tool and application. It consists of task described at four levels of
abstraction: phases, generic tasks, specialized tasks and process instances.

At the top level, the data mining process is organized into the following phases:
• Business understanding that focuses on understanding the project objec-

tives and requirements from business perspective,
• Data understanding that includes initial data collection, identification of

data quality problems and detection interesting data subset to form hy-
potheses for hidden valuable information,

• Data preparation that covers construction of the data set for modeling
tools. This phase focuses on tables, records and attributes selection as well
as transformation and cleaning of data.

• Modeling that focuses on selection of various modeling techniques and on
tuning for values of optimal parameters,

• Evaluation of the model quality with respect to achieving the business
objectives,

• Deployment that involves applying models within decision making pro-
cess in organization. It takes simple forms as reports generation as well as
repeatable mining process.

The second level is the level of generic tasks. It was introduced to cover
whole data mining process, all possible data mining applications and new
modeling techniques e.g. [1].

The third level is the specialized tasks. It describes how the general task
differed in various situations.

The last but not least is the process instance level. It is a record of the
actions, decision and results of an actual data mining engagement.

CRISP-DM distinguishes between following dimensions of data mining
context:
• The application domain (e.g. banking, education, customer relationship

management [2, 6, 13, 14]) is the area in which project take place,
• The data mining problem type (e.g. data description and summarization,

segmentation, concept descriptions, classification, prediction, dependency
analysis, etc.) describes the specific classes of objectives that the mining
process deals with,

• The technical aspect (e.g. missing values) describes technical challenges
that usually occur during data mining,

• The tool and technique that specifies which DM tools and/or techniques
(e.g. Clementine, Poly Analyst, Weka [14]) are applied during the DM
project.
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Figure 1. Data mining standards in various aspects
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APPLICATION PROGRAMMING INTERFACE OLE DB
FOR DATA MINING

The API OLE DB DM is an example of a new protocol that simplifies
communication and provides better integration of data mining tools with data
based management applications. A virtual object that is similar to a table (the
Data Mining Model DMM) can be created with CREATE statement, browsed
with SELECT, populated with INSERT INTO, refined or used to derive pre-
diction. A fundamental operation is the training of DMM, follow by use of the
model to derive prediction [11,12]. The operation is executed in the following
steps:
• Create an OLEDB data source and obtain an OLE DB session object
• CREATE MINING MODEL ...
• INSERT INTO                      //training data into the model
• SELECT ...

FROM  .....
PREDICTION JOIN

PREDICTIVE MODEL MARKUP LANGUAGE (PMML)
Predictive Model Markup Language (PMML), managed by the Data

Mining Group [6,15] is the most widely deployed data mining standard. It is
based on an XML mark up language to describe statistical and data mining
models. It describes the inputs to data mining models, the transformations
used prior to prepare data for data mining, and the parameters that define the
models themselves. It is used for a wide variety of applications, including
applications in e-business, direct marketing, finance, manufacturing, and de-
fense in products released by such vendors as Angoss, IBM, Magnify, Microsoft,
MINEIT, NCDM, NCR, Oracle, Salford Systems, SPSS, SAS and Xchange.
The current standard - PMML 2.0 - supports several predictive model types:
Tree Model, Neural Network, Clustering Model, Regression Model, General
Regression Model, Naïve Bayes Models, Association Rules Model, and Se-
quence Model. These categories cover the most popular data mining methods
that are likely to find in contemporary data mining tools.

CONCLUSION
User participation in the standardization process is becoming more im-

portant. This issue should be also considered in the process of selection of data
mining methods and tools.
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