
632 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
Many works have been done to optimize the performances of relational
data warehouses. Three main techniques are available in relational DBMS
or in specific systems : indexes including join indexes, materialized views,
partitioning. Each one can be used alone, or combined with the others. In
this paper we will consider more precisely the partitioning technique. In
general, only the direct partitioning of a relation (i.e. according to the
attributes of this relation) is possible. However, in the context of a warehouse,
it would be interesting to be able to implement the derived partitioning
which consists in partitioning a relation according to the attributes of
another relation referenced by the first. We show how to implement a
derived partitioning with a relational DBMS and we establish its interest
through several experiments.

1. INTRODUCTION
Three main techniques are available in RDBMS for optimizing the

performances of databases in general and data warehouses in particular :
indexes including join indexes, materialized views, partitioning.

Indexes can contribute largely to accelerate the execution time of
requests, particularly when the number of values in the columns to be
indexed is large. However, indexes need space to be installed; construc-
tion time and update time can be long. In the context of data ware-
houses, the traditional B-tree indexes are not well appropriate. Bitmap
indexes offer better performances when the column of indexing has a
low cardinality but their update is more expensive. Many variants of
indexes were studied [18]. Most interesting are the join indexes [19].
Algorithms of index selection in a data warehouse context are proposed
in [7], [8], [10], [13].

A materialized view constitutes an extremely effective way to
minimize the execution of a query. If a query is completely materialized,
its execution cost is strictly reduce to the reading of the view tuples.
However a view presents several drawbacks. Like indexes, it needs space
to be materialized. Construction time and update time can also be long.
Relational DBMS generally authorize incremental update (also called
fast refresh), but with very significant practical restrictions. Very often,
the only possibility is to entirely recompute the view. Many algorithms
were proposed for the selection of views to optimize a set of queries :
algorithms without constraints [2], [21], algorithms directed by the
space constraint [11], algorithms directed by a time maintenance con-
straint [12], [15], [22]. The simultaneous selection of a set of views and
indexes is considered in various ways in [1], [3], [5], [9], [14], [20].

Partitioning is a well-known data base technique used for different
purposes: to manage large sets of tuples or occurrences, to control
distribution of data, to permit parallel execution, to improve the re-
sponse time of requests. It was the subject of many studies, in particular
in the context of object oriented data bases [4],[6], [16]. One distin-

guishes vertical partitioning, horizontal partitioning or mixed parti-
tioning.

In the context of relational warehouses, horizontal partitioning is
more especially interesting. It consists in distributing the tuples of a
relation in different physical zones on the disk. Editors of relational
DBMS introduced it with the objective to facilitate the management of
the fact table which is often very bulky. In particular, it makes it pos-
sible to conveniently manage the addition of new tuples in the fact
table. Partitioning is then carried out according to the values of an
attribute TIME of type DATE. Each partition corresponds to a range of
values for TIME. The new tuples are inserted into a new partition (with
the most recent dates). At the same time, to avoid a continual growth of
the fact table, the oldest partition is destroyed. Horizontal partitioning
can also be used for the optimization of requests. For example let us
consider a request on the fact table involving a selection predicate with
a coefficient of selection of 10% (10% of the tuples satisfy the predi-
cate). By partitioning the table in two partitions P1 and P2 (P1 con-
taining these 10% of tuples and P2 the 90% remaining), to solve the
query it is enough to read the tuples of P1. The execution of the query
is thus divided (approximately) by 10.

Commercial RDBMS offer varied facilities of horizontal partition-
ing. ORACLE, for example, allows partitioning of a table in RANGE
mode and in HASH mode. The RANGE mode consists in defining the
partitions by intervals of values on one or several columns of the table.
HASH mode allows to place the tuples in a partition according to the
result of a hash function (provided by the system) applied to the values
of the partitioning columns. These two modes can be combined to
benefit from the advantages of the one and of the other.

Derived horizontal partitioning consists in carrying out the hori-
zontal partitioning of a relation by using the attributes of another rela-
tion to which the first is connected by referencing. Derived partitioning
is particularly interesting in the context of data warehouses because
most of the requests consist in aggregating attributes of the fact table
with conditions of selection involving attributes of the dimension tables.
Note that commercial RDBMS do not offer facilities to specify directly
derived partitioning.

In a data warehouse context, join indexes have almost the same
objective as derived partitioning : accelerating requests with selection
predicates involving columns of dimension tables. But surprisingly, these
two techniques have not been compared systematically. We propose in
this study a solution to implement derived horizontal partitioning and
we show on a benchmark its interest relatively to join indexes. In this
study we will consider the updates because they can influence signifi-
cantly the behavior of the users.

Implementation and Selection of
Derived Partitioning for Optimizing the

Performances of Relational Data
Warehouses

Michel Schneider, Hervé Lorinquer
LIMOS, Blaise Pascal University

63177 AUBIERE CEDEX (France)
Tel : 33 4 73 40 50 09, Fax 33 4 73 40 50 01

michel.schneider@isima.fr, herve.lorinquer@isima.fr

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 633

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The paper is organized as follows : in sections 2 and 3 we present
respectively the benchmark and the requests we will use for the experi-
ment, in section 4 we explicit our solution to install a derived partition-
ing, in section 5 we discuss the results of the experiments, in section 6
we conclude and we draw some perspectives.

2. THE BENCHMARK WAREHOUSE
The benchmark warehouse we use is generated from the generic

APB1 benchmark [17]. The schema has a star configuration [19] and
comprises the fact table Actvars and four dimension tables: Prodlevel,
Custlevel, Timelevel, Chanlevel. This warehouse has been populated
using the generation module of APB1. Attributes of each table, number
of tuples, number of distinct values for each attribute are given in Figure
1. Each dimension table can be joined with the fact table through its first
attribute.

This warehouse has been installed with ORACLE 9i on a Pentium
IV 1,5 Ghz microcomputer (with a memory of 256 Mo and two 7200 rps
60 Go disks) running under Windows 2000 Pro.

3. THE QUERIES AND THE UPDATES
For our experiments, we consider five queries Q1 to Q5 with one

join and one predicate, and three queries Q6 to Q8 with two joins and
two predicates (Figure 2). A join is always between the fact table and one
dimension table. Each predicate is associated to a join and involves an
attribute of the corresponding dimension table. We have chosen the
joins and the predicates in order to have very different levels of selec-
tivity.

Since an attribute in the predicates can take several different val-
ues, each of the queries Q1 to Q8 is parameterised. This means that a
user can execute the query with any of these values. So a parameterised
query defines a set of potential queries. There is a potential query for
each value. To have a complete view on the performances of the two tech-

niques, it is important also to measure times for the updates. For this
purpose we consider two situations UD (Update each Day) and UW
(Update each Week) materializing the deletion followed by the inser-
tion in the fact table of a number of tuples corresponding to the activity
of one day (52 071 tuples) and one week (364 500 tuples). In each case
we measure the time the system uses to make the operation.

4. IMPLEMENTING THE DERIVED HORIZONTAL
PARTITIONING

Since the selection predicates in the queries Q1 to Q8 are expressed
on attributes of dimension tables, it is not possible to used directly these
attributes to specify the partitioning of the fact table. So, for each
predicate p

i
, we introduce in the fact table a column dp

i
 whose integer

value depends on the value of the corresponding attribute in the dimen-
sion table. To be more precise let us consider the case of query Q1. Its
predicate p

1
involves the attribute division_level which can take one of

four values. So dp
1
 takes a value 1 to 4 depending on the value of

division_level.
Using the dp

i
, we can then specify the desired partitioning in one of

the three modes : range or hash or hybrid. The queries must be manually
rewritten in function of the dp

i
 in order to permit the system to take

advantage of the partitioning.
Note that insertion operation of a tuple is slightly complicated.

We must first determine through a join the value of each the dp
i
 in order

to permit the system to place the tuple in the correct partition.
This implementation needs extra space for the dp

i
. It uses also

extra time for the updates.

5. EXPERIMENTAL RESULTS AND COMMENTS
In order to situate the interest of the derived partitioning we have

made three series of experiments :
- one without optimization ;
- one with a partitioning which depends of each query ;
- one with join indexes.

Figure 1 : The star warehouse used for the experiments

table attribute number of
distinct values

Product_level 6500
Customer_level 640

Time_level 517
Channel_level 9

UnitsSold -
DollarSales -

Actvars
(24 786 000)

DollarCost -
 Code_level 9000

Class_level 605
Group_level 300
Family_level 75
Line_level 15

Prodlevel
(9 000)

Division_level 4
 Store_level 900 Custlevel

(900) Retailer_level 99
 Tid 730

Year_level 2
Quarter_level 4
Month_level 12
Week_level 52

Timelevel
(24)

Day_level 31
 Base_level 9 Chanlevel

(9) All_level 9

 SQL formulation
Predicate
selectivity

Number
of tuples

Q1

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, prodlevel WHERE product_level = code_level
AND division_level = ‘OZQBQEJCJ14V’
GROUP BY code_level;

1/4

2 400

Q2

SELECT tid, sum(dollarsales)
FROM actvars, timelevel
WHERE time_level = tid
AND month_level = '01'
GROUP BY tid;

1/12

62

Q3

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, prodlevel WHERE product_level = code_level
AND line_level = ‘IW8A44CP8JU3’
GROUP BY code_level;

1/15

603

Q4

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, prodlevel WHERE product_level = code_level
AND family_level = ‘PASN4MAJI2OI’
GROUP BY code_level;

1/75

121

Q5

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, prodlevel WHERE product_level = code_level
AND group_level = ‘P5FOJ5DXP9SF’
GROUP BY code_level;

1/300

29

Q6

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, timelevel,prodlevel
WHERE time_level = tid AND product_level = code_level
AND division_level = ‘RLIOT0T4TER5’
AND month_level = '01'
GROUP BY code_level;

1/4
1/12

1 621

Q7

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, timelevel,prodlevel
WHERE time_level = tid AND product_level = code_level
AND month_level = '01'
AND line_level = ‘HSLNCSTKB22Y’
GROUP BY code_level;

1/12
1/15

430

Q8

SELECT code_level, sum(dollarsales), sum(UnitsSold)
FROM actvars, timelevel,prodlevel
WHERE time_level = tid AND product_level = code_level
AND month_level = '01'
AND family_level = ‘B7VRJFFXA6D5’
GROUP BY code_level;

1/12
1/75

117

Figure 2 : The queries used for the experiments

634 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The results are reported in the three tables (one for each series) of
figure 3.

Concerning the series with partitioning, we have installed for each
query a number of partitions equal to number of different values for the
corresponding selection attribute. We use the range mode (R) when this
number is small, otherwise the hash mode (H). Note that for the queries
with two joins and two predicates, we use the hybrid mode.

Concerning the series with joins indexes, we install one index for
the queries with one join and two indexes for the queries with two joins.

For each query we report the extra space used by the partitioning
or the indexes, the query time (in seconds), the update time for UD and
UW.

In order to situate the influence of queries frequencies, we have
also calculated two consolidated times CUD(a%) (resp. CUW(a%)) for
two values of a (25 and 50) and for the two cases UD and UW. Here a is
the percentage of potential queries which can be posed between two
updates. Recall from section 3 that there is a potential query for each
value of the parameter in a predicate selection. Then CUD(a%) =
0.01*a*n*E+UD where E is the execution time for a query Q, n is the
number of potential queries associated to Q, UD is the time of the
update (Update each Day). In other words CUD(a%) gives the total time
which is needed for executing a% of the potential queries plus the time
of the update. The same holds for CUW. It is assumed that each poten-
tial query takes the same time for its execution. These consolidation
times must be viewed as simple models to simulate real situations where
queries and updates interleave.

We are now able to give some comments about the experiments.
Concerning the query time, we observe that partitioning gives a profit
even for a low selectivity. The profit is very important with a high
selectivity (when the number of different values for the selection at-
tribute is greater than 50). Note that there is an inversion for Q2 and Q3
which is explained by the size of the query result (62 tuples for Q2 and
603 tuples for Q3). Join indexes give also a profit as soon as the selec-
tivity is sufficiently high (more than 10 different values for the selec-
tion attribute). But partitioning gives better results compared to join
indexes.

Concerning the update time, join indexes are in general much more
efficient than partitioning. Partitioning performs as well as indexes
only for low selectivity and for daily updates.

Concerning our consolidated times, it appears that partitioning
gives always the better results for the two situations a=25 and a=50. It is
easy to see that join indexes are profitable only for small values of a
(less than 5), i.e. when queries have about the same frequencies as the
updates.

From these experiments we can deduce the following pragmatic
rules:

Rule 1 : Select a partitioning relatively to a parameterised query if
the selectivity for this query is low or if the frequency of the update is
low compared to the one of the query.

Rule 2 : Select a join index relatively to a parameterised query if
the selectivity for this query is high or if the frequency of the update is
about the same as the one of the query.

6. CONCLUSION
The objective of this paper was to suggest an implementation and

to explore the performances of horizontal derived partitioning.
Compared to join indexes, horizontal derived partitioning offers

better performances for query time, especially when the selectivity of
the selection predicates is low. With regard to the updates, they are less
interesting, primarily when the number of partitions is high. When
updating and querying interleave, a partitioning on an attribute A with n
different values is advantageous as soon as a parameterised query on A is
executed more than 0.05*n times between two updates.

 This work shows that the two techniques are rather complemen-
tary. There is thus interest to use them jointly as it had been already
underlined through a theoretical model [6]. It would thus be necessary to
design algorithms for combined selection. A realistic cost model would
be necessary.

REFERENCES
[1] S. Agrawal, S. Chaudhuri, V.R. Narasayya, “Automated selec-

tion of materialized views and indexes in SQL databases”, in Proc. 26th
Int. Conf. on Very Large Data Bases (VLDB), 2000, pp. 496-505.

[2] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized view
selection in a multidimensional database,” in Proc. 23rd Int. Conf. on
Very Large Data Base (VLDB), 1997, pp. 156-165.

[3] L. Bellatreche, K. Karlapalem, and Q. Li, “Evaluation of in-
dexing materialized views in data warehousing environments”, in Proc.
Int. Conf. on Data Warehousing and Knowledge Discovery (DAWAK),
2000, pp. 57-66.

[4] L. Bellatreche, K. Karlapalem, M. Schneider and M. Mohania,
“What can partitioning do for your data warehouses and data marts”, in
Proc. Int. Database Engineering and Application Symposium (IDEAS),
2000, pp. 437-445.

[5] L. Bellatreche, K. Karlapalem, and M. Schneider, “On efficient
storage space distribution among materialized views and indices in data
warehousing environments”, in Proc. Int. Conf. on Information and
Knowledge Management (ACM CIKM), 2000.

[6] L. Bellatreche, M. Schneider, M. Mohania, B. Bhargava,
“Partjoin : an efficient storage and query execution design strategy for
data warehousing”, Proc. Int. Conf. on Data Warehousing and Knowl-
edge Discovery (DAWAK), 2002.

[7] S. Chaudhuri and V. Narasayya., “An efficient cost-driven in-
dex selection tool for microsoft sql server”, in Proc. Int. Conf. on Very
Large Databases (VLDB), 1997, pp. 146-155.

[8] C. Chee-Yong, “Indexing techniques in decision support Sys-
tems”, Ph.D. Thesis, University of Wisconsin, Madison, 1999.

 [9] S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical data-
base design for relational databases”, ACM Transactions on Database
Systems, Vol. 13, N° 1, pp. 91-128.

[10] H. Gupta et al., “Index selection for olap,” in Proc. Int. Conf.
on Data Engineering (ICDE), 1997, pp. 208-219.

[11] H. Gupta, “Selection of views to materialize in a data ware-
house”, in Proc. 6th Int. Conf. on Database Theory (ICDT), 1997, pp.
98-112, 1997.

[12] H. Gupta and I. S. Mumick, “Selection of views to materialize
under a maintenance cost constraint,” in Proc. 8th Int. Conf. on Data-

Figure 3 : The results of the experiments and the calculated values of the
consolidated times
(respectively without technique, with partitioning, with join indexes)

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Query time (s) 106 61 63 53 54 61 59 56
UD (s) 68 68 68 68 68 68 68 68
CUD(25%) (s) 174 251 320 1075 4118 800 2192 12668
CUD(50%) (s) 280 434 572 2082 8168 1532 4316 25268
UW (s) 75 75 75 75 75 75 75 75
CUW(25%) (s) 181 258 327 1082 4125 807 2199 12675
CUW(50%) (s) 287 441 579 2089 8175 1539 4323 25275

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Number of
partitions

4
(4R)

12
(12R)

15
(15R)

75
(75H)

300
(300H)

48
(4R*12H)

144
(12R*12H)

900
(12R*75H)

Extra space (Mo) 161 358 424 449 476 408 442 641
Query time (s) 53 9 13 4 1 11 2 1
UD (s) 69 70 70 88 112 86 105 135
CUD(25%) (s) 122 97 122 164 187 218 177 360
CUD(50%) (s) 175 124 174 240 262 350 249 585
UW (s) 105 92 121 154 199 144 164 220
CUW(25%) (s) 158 119 173 230 274 276 236 445
CUW(50%) (s) 211 146 225 306 349 408 308 670

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Join indexes IJ1 IJ2 IJ3 IJ4 IJ5 IJ1+IJ2 IJ2+IJ3 IJ2+IJ4
Space for indexes (Mo) 11 8 20 35 59 19 28 43
Query time (s) 152 24 57 26 8 19 9 3
UD (s) 69 69 71 69 68 68 71 69
CUD(25%) (s) 221 141 299 563 668 296 395 744
CUD(50%) (s) 373 213 527 1057 1268 524 719 1419
UW (s) 98 99 101 101 104 109 110 110
CUW(25%) (s) 250 171 329 595 704 337 434 785
CUW(50%) (s) 402 243 557 1089 1304 565 758 1460

Information Technology and Organizations 635

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

base Theory (ICDT), 1999, pp. 453-470.
[13] Informix Corporation, “Informix-online extended parallel

server and informix-universal server: A new generation of decision-
support indexing for enterprise data warehouses”, White Paper, 1997.

[14] W. J. Labio, D. Quass, and B. Adelberg, “Physical database
design for data warehouses,” in Proc. Int. Conf. on Data Engineering
(ICDE), 1997, pp. 277-288.

[15] H. Mistry and al., “Materialized view selection and mainte-
nance using multi-query optimisation”, in Proc. ACM SIGMOD 2001,
pp. 307-318.

[16] A. Y. Noaman and K. Barker, “A horizontal fragmentation
algorithm for the fact relation in a distributed data warehouse”, in Proc.
8th Int. Conf. on Information and Knowledge Management (CIKM),
1999, pp. 154-161.

[17] OLAP Council, “APB-1 olap benchmark, release II”, http://

www.olapcouncil.org/research/bmarkly.htm
[18] P. O’Neil and D. Quass., “Improved query performance with

variant indexes”, in Proc. ACM SIGMOD Int. Conf. on Management of
Data, 1997, pp. 38-49.

[19] Red Brick Systems, “Star schema processing for complex
queries”, White Paper, July 1997.

[20] A. Sanjay, G. Surajit, and V. R. Narasayya, “Automated selec-
tion of materialized views and indexes in microsoft sql server”, in Proc.
Int. Conf. on Very Large Databases (VLDB), 2000, pp. 496-505.

[21] J. Yang, K. Karlapalem, and Q. Li, “Algorithm for material-
ized view design in data warehousing environment,” in Proc. 23th Int.
Conf. on Very Large Data Bases (VLDB), 1997, pp. 136-145.

[22] C. Zhang, X. Yao and J. Yang, “An evolutionary approach to
materialized views selection in a data warehouse environment”, IEEE
Trans. on Systems, Man, and Cybernetics, Vol. 31, N°. 3, pp. 282-294.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/implementation-selection-derived-

partitioning-optimizing/32095

Related Content

Analysis of Gait Flow Image and Gait Gaussian Image Using Extension Neural Network for Gait

Recognition
Parul Arora, Smriti Srivastavaand Shivank Singhal (2016). International Journal of Rough Sets and Data

Analysis (pp. 45-64).

www.irma-international.org/article/analysis-of-gait-flow-image-and-gait-gaussian-image-using-extension-neural-network-

for-gait-recognition/150464

Young People, Civic Participation, and the Internet
Fadi Hirzallaand Shakuntala Banaji (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 3667-3676).

www.irma-international.org/chapter/young-people-civic-participation-and-the-internet/184075

A Novel Call Admission Control Algorithm for Next Generation Wireless Mobile Communication
T. A. Chavanand P. Saras (2017). International Journal of Rough Sets and Data Analysis (pp. 83-95).

www.irma-international.org/article/a-novel-call-admission-control-algorithm-for-next-generation-wireless-mobile-

communication/182293

Semantic Image Retrieval
C.H.C. Leungand Yuanxi Li (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 6009-6019).

www.irma-international.org/chapter/semantic-image-retrieval/113057

Understanding Retail Consumer Shopping Behaviour Using Rough Set Approach
 Senthilnathan CR (2016). International Journal of Rough Sets and Data Analysis (pp. 38-50).

www.irma-international.org/article/understanding-retail-consumer-shopping-behaviour-using-rough-set-approach/156477

http://www.igi-global.com/proceeding-paper/implementation-selection-derived-partitioning-optimizing/32095
http://www.igi-global.com/proceeding-paper/implementation-selection-derived-partitioning-optimizing/32095
http://www.irma-international.org/article/analysis-of-gait-flow-image-and-gait-gaussian-image-using-extension-neural-network-for-gait-recognition/150464
http://www.irma-international.org/article/analysis-of-gait-flow-image-and-gait-gaussian-image-using-extension-neural-network-for-gait-recognition/150464
http://www.irma-international.org/chapter/young-people-civic-participation-and-the-internet/184075
http://www.irma-international.org/article/a-novel-call-admission-control-algorithm-for-next-generation-wireless-mobile-communication/182293
http://www.irma-international.org/article/a-novel-call-admission-control-algorithm-for-next-generation-wireless-mobile-communication/182293
http://www.irma-international.org/chapter/semantic-image-retrieval/113057
http://www.irma-international.org/article/understanding-retail-consumer-shopping-behaviour-using-rough-set-approach/156477

