
624 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

1. INTRODUCTION
The Real-time Architecture-Centric Testbed (REACT), that we

developed, adopts a new architecture-centric, early-discovery approach
to analyzing and modeling architecture designs prior to code develop-
ment. Contractor-provided architecture artifacts are typically Unified
Modeling Language (UML) class, sequence, and state diagrams, but other
non-UML data (e.g. document-oriented usecase descriptions, spread-
sheet models, design studies, task configurations etc.) may also be pro-
vided. Lessons learned and an example simulation using REACT’s early
design is discussed in [1]. The early design of REACT used specially
developed tags and primitives to augment additional architecture infor-
mation via a commercial UML tool or a REACT data entry Graphical
User Interface (GUI) (e.g. platform specific information). We found
during spiral development cycles that the practice of extensive manual
external augmentation of UML diagrams did not scale when large UML
models consisting of thousands of classes and methods would change.
Lessons learned in using REACT’s aspect-oriented approach are dis-
cussed in [2]. REACT’s architecture-centric approach differs from re-
lated research that has focused on developing automated techniques to
support architecture synthesis and object-oriented software develop-
ment (e.g. code generation). Automated techniques to synthesize state
machines from OMT scenario diagrams are discussed in [3],[4],[5]. In
[6], a UML statechart synthesis technique from collaboration diagrams
is applied to produce more complete behavioral specifications. The
DYNAMO environment [7] promotes deriving static architectural in-
formation from dynamic scenario models. Some commercial UML tools
provide proprietary development methodologies to auto-generate state-
driven simulation and development support for real-time systems [8],[9].
Although REACT supports automated synthesis of state/activity dia-
grams from sequence diagrams and animation during simulation, REACT’s
focuses on using these techniques to perform automated aspect-oriented
static and dynamic analysis of proposed architectural descriptions to
discover and remedy architectural shortfalls early. This paper presents
some architectural challenges we frequently encounter when analyzing
complex systems. We briefly highlight REACT’s new aspect-oriented
design approach and how we exploited a multi-level modeling approach
to address UML modeling shortfalls that we encountered when perform-
ing architectural analysis of large satellite communication systems.

2. ARCHITECTURAL CHALLENGES FOR COMPLEX
SYSTEMS

The long-term modeling goal for REACT is to build an architec-
ture assessment capability that accurately reflects the embedded system
software architecture of the satellite systems under study. REACT is
used to exercise various workload scenarios to perform early discovery
of possible flaws in design and understand better the bounds of correct
operation. Scenarios of interest may be suggested by the contractor or
by REACT. When code is available, REACT will reverse engineer that
and compare it to the UML design, and use sizing parameterizations to

refine earlier assessment models. There are several problems of interest
to REACT. These include:
Model key input/output queues etc. and monitor their size
• Investigate the profile of method executions (given that granularity)

for different time-critical scenarios
• Investigate possible effects of task starvation from tasking/priority

structure
• Investigate bandwidth utilizations of various busses due to software

messaging
• Backward compatibility issues with legacy communication software
• Multi-satellite communication and synchronization/control/timeout

issues
• Error events and recovery scenarios
• Estimates of memory and CPU utilization over time

Upon receipt of UML, we often discover a disconnect between the
level of architectural detail provided by the contractor and what is
necessary to fully address the interest areas stated above. For large,
highly complex systems, there is a trade-off between what insight RE-
ACT hopes to get out of a UML model, and what it takes for a contrac-
tor to provide the detail to get that insight. For example, in one project
we found 6,071 methods used in all the UML class diagrams. 56% of
those methods did not have any behavioral detail described within either
a state/activity diagram or a sequence diagram. To uniquely characterize
all of a method’s behavior via a sequence diagram, a method’s behavior
could be documented via a principal participant in one sequence dia-
gram.1 In the project under study, this would require 6071 sequence
diagrams. However, in the project, there were only 410 sequence dia-
grams. Consequently a principal participant sequence diagram descrip-
tion would document only 7% of all methods. Even if the 6071 se-
quence diagrams were provided, the program complexity is actually
much greater than what a human can understand by manually inspecting
the architecture. To see this, we created a REACT aspect to generate
the number of messages versus the number of sequence diagram partici-
pants for the 410 sequence diagrams as shown in Figure 1.

The average (documented) sequence diagram has 14.46 messages
and involves 5.75 participants. This means that on the average there
are between 2 and 3 messages per participant on each sequence diagram,
indicating that the number of action-groups per methods would be be-
tween 2 and 3. For 6,000 methods, this means between 12,000 to
18,000 action-groups would be needed by a human to “understand” the
design behavior at the method level. Understanding the implications of
change to the methods of interaction for such a complex system cannot
be managed manually. Techniques to automate the modeling of complex
systems are essential to not only identify architectural shortfalls, but
also to close the discrepancy between what behavior is provided and
what behavior is needed to model the system.

There are at least three approaches to support modeling of the
contractor architectural artifacts. These are method-level, participant

Aspect-Oriented Architectural Analysis
using Multi-level Modeling of Complex

Systems
Phillip Schmidt, Robert Duvall, Greg Mulert, Jaime Milstein, and Jesus Rivera

The Aerospace Corporation1, 2350 E. El Segundo Blvd
El Segundo CA 90245-4691
Phillip.P.Schmidt@aero.org

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 625

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

level, and use-case level modeling. The next section briefly describes
REACT’s new aspect-oriented design and section 5 discusses REACT’s
approach to mitigate the shortfalls of the UML architectural descrip-
tions.

3. REACT’S ASPECT-ORIENTED DESIGN
REACT’s architectural analysis design is patterned after an aspect-

oriented approach [10]. An aspect defines an area of concern and usu-
ally provides some action to take regarding that concern. Aspect-orien-
tation is usually described in terms of defining aspects over the program-
ming language space. In REACT however, the definition of aspects is
performed over the architectural design space. In this way, REACT
supports the ability to separate concerns but is non-architecturally in-
trusive since its role is to passively evaluate a contractor-given archi-
tecture, not redesign it. REACT’s aspects are principally ones of discov-
ery, derivation, augmentation, and dynamic assessment, not necessarily
redesign (though these, too, could be developed). For example, a discov-
ery aspect (usually expressed in XML) might look for method names in
a sequence diagram that are undefined within a class. A derivation aspect
might collect all events. An augmentation might provide additional
meta-information such as parameterizing task priority information.
REACT’s aspects can be very sophisticated as they effectively allow
query and augmentation over the architectural design space. A partial
list of REACT’s aspects include:
• All classes with duplicated class names but different attributes or method

definitions
• Special tags used within sequence diagrams to denote requirement trace-

ability information
• All sequence diagram participants
• Documentation information
• Class methods that do not appear in any sequence diagram
• All guard conditions used in backward self-message
• Sequence diagrams for which no class is defined
• Sequence diagrams that have a participant/object of a particular class

We found that REACT’s aspect-oriented architectural assessment
is an effective approach for static and dynamic analysis. Figure 2 illus-
trates REACT’s new aspect-oriented design. REACT accepts architec-
tural information principally in the form of UML and extracts this

information into an architectural representation. If this representation
contains behavioral information (such as state/activity diagrams, or
sequence diagram information), a Model Generator can generate model
configuration files that capture the logical behavior of the UML design.

These model configuration files can be interpreted during simula-
tion that can support dynamic assessment. The activity diagrams are
directly derived from the corresponding UML models prior to any code
development. REACT supports extensive static analysis of UML de-
signs. Although many UML tools provide built-in static checks, and
provide scripting and programming capabilities to enable the tool user
to program particular static analyses, this approach is tool-specific.
Since our analysis requires that we accept UML from possibly any ven-
dor, REACT adopts a UML tool-independent approach to static analy-
sis. This has proven to be quite useful in identifying architectural incon-
sistencies and incompleteness especially in early architectural develop-
ment when complete behavior may not be known. Manual inspection
of the UML often leads us to design custom “aspects” for further inves-
tigation. For example, one contractor used a particular UML icon (the
destructor) in a non-standard way. Using aspects, we were quickly able to
identify the exact location of all 239 instances after accessing over 400
sequence diagrams. In another example, REACT was able to identify
discrepancies between UML and interface control document interfaces.
In the following sections, we discuss how REACT’s aspect-oriented ap-
proach has been applied to support dynamic assessment when UML
models contain missing and incomplete information.

4. MODELING LEVELS

Method-level Modeling
Method-level modeling captures the behavioral detail of all meth-

ods used within the software so that timing and behavioral studies can be
performed. It is the lowest level of granularity and offers the greatest
modeling fidelity. Modeling at this level enables behavioral replacement
with reverse-engineered code, and can study other integration issues
such as legacy interface documents, and potential multi-satellite cross-
link behavior. This level supports fine-granularity studies involving
ground-system interfaces. As discussed above, to be successful in the
long-term, method-level modeling often requires more behavioral detail
than a contractor usually provides. As stated earlier, for the satellite
project under study, only 44% of the methods were described anywhere,
and at most only 7% as a principal participant.

Participant-level Modeling
Participant-level modeling deals with the interactions at the se-

quence diagram participant level. Normally each participant within a
sequence diagram would have a state/activity diagram to characterize its
behavior, and the participant is usually an object instance of some class.
When standard sequence diagrams are used, participant level modeling
at this level provides only logical flow with no control flow informa-
tion. When sequence diagrams support control flow, then translated
state/activity diagrams can be generated. Modeling at this level gener-
ally is class-oriented and of greater granularity. For large complex
systems, UML sequence diagram participants can be incomplete. In one
satellite project, all but 8 participants on the sequence diagrams repre-
sented class instances (objects). Of the 2,300 participants, only 866
were unique, which means that only 75% of the classes were captured at
this level.

Use Case-level Modeling
Use case-level modeling attempts to capture behavior described by

collections of use case steps (called courses of action (COAs)). Use case
level modeling permits the testing of pre/post conditions and will pro-
vide evaluation of the processing behavior of those “threads of activ-
ity” defined by use cases. Within the projects we have studied, the
software use cases are usually described outside of UML as text docu-
ments. The COAs represent processing actions and decision point ac-
tions. The use cases include pre and post conditions as well as alternative
actions and triggers that may drive a particular use case. Use case

Figure 1: Sequence Diagram Complexity

Figure 2: REACT’s Aspect-Oriented Architectural Assessment

626 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

modeling maps closely to requirements-level processing but may not
directly trace to actions that are within sequence diagrams. One lesson
we have learned is that COAs traced to sequence diagram level granular-
ity instead of method-level granularity make it difficult to map the
many COA actions to method level behavior. We have found that COA
traceability varies widely between the different software components
being developed. Some software developers are more thorough than
others.

5. APPLYING MULTI-LEVEL MODELING
Given the above limitations in method behavioral descriptions,

participant modeling, and use case coverage, what is REACT’s approach
to meet it’s modeling goals? In this section, we describe how REACT’s
aspect-oriented approach is being used to support multi-level modeling.

Method-level Modeling
REACT has developed a capability to automatically translate UML

sequence diagrams (that contain vendor-specific control information)
into state/activity diagram representations within REACT’s internal
representation. The result of this automated translation is a large num-
ber of condition and action-list items that need to be parameterized in
order that they can be simulated. Techniques to do the parameteriza-
tion automatically are being developed. What this entails is a separa-
tion of model-specific information (e.g. how should a particular deci-
sion be modeled) from architectural representation (e.g. there is a deci-
sion id 45 on activity diagram id 34), and techniques to provide a map-
ping assignment (e.g. model decision id 45 on activity id 34 using the
provided probability distribution.) Method-level modeling will be per-
formed by searching over the sequence diagrams looking for a principal
participant that is invoked by the method. The above analysis indicates
that the coverage of method behavior via this technique will be fewer
than 10% of all methods. For methods not discovered this way, REACT
auto generates a default, black box, generic-processing behavior that
will likely lose processing detail because it will be a crude representation
of actual behavior, but will provide 100% completion of behavioral
detail. REACT is developing aspects to automatically parameterize
behavioral information based on default primitive behavior or by im-
porting prior augmented architectural information. For example, al-
though initially missing architectural detail may be a simple processing
block, later UML models may provide greater detail, or even behavior
extracted from reverse-engineered prototype code could be applied.

Techniques to support automatic augmentation via aspects are be-
ing developed. Since REACT’s internal representation is XML-based as
well as the separate model-specific information files, it is not difficult to
define aspects that navigate over REACT’s internal representation look-
ing for similar architectural matches. In contract, in REACT’s old
design, locations for architectural matches would be described as embed-
ded tags that were inserted via manual methods. As different UML
models were frequently released (biweekly) such a manual-intensive aug-
mentation approach quickly became infeasible. REACT’s new aspect-
oriented approach enables modeling-specific information to be designed,
kept and to evolve separately from REACT’s architectural representa-
tion. Aspects processing is then provided that take pre-defined param-
eterization data in a model-specific information file and map it to an
action location within REACT’s representation using XML queries and
navigation over REACT’s architectural space.

Since not all sequence diagrams follow a principal participant rep-
resentation approach, it is possible that any given method invoked in
different contexts, will display different behavior. To support this,
REACT will develop techniques to extract and manage the multiple
behaviors for methods invoked within sequence diagrams. For example,
aspects to locate the different representations will be developed. Merg-
ing these multiple behaviors into a common activity diagram is an area
for further research.

Method behavior may be replaced when code is reverse-engineered,
but behavior detail will be limited by the detail of reverse-engineering
techniques. Techniques to automatically replace reverse-engineered
method behavior will be explored. Tailoring commercial reverse-engi-

neering tools is another area of further research. It is always recom-
mended that the contractor improve the behavioral detail of their class
methods directly, but if this is unlikely or not possible, early code devel-
opment should be made available for reverse-engineering and then
REACT’s aspect-oriented augmentation can be applied. Finally aspects
to search for design refactoring possibilities are also being studied.

Participant-level Modeling
To support participant-level modeling, REACT’s auto-translation

of sequence diagrams will be retargeted to generate state/activity de-
scriptions for every participant within each sequence diagram. This is a
different type of auto-generation than method-level modeling and re-
sults in a state/activity diagram associated with a participant instead of
a method. A sequence diagram thread can be executed via an invocation
stimulus to a participant at the beginning of the sequence diagram. In
practice, making the auto-generated sequence diagrams executable usu-
ally takes some manual adjustment because not all the decision points,
guard conditions, iteration criteria, etc. with contractor sequence dia-
grams are unambiguous. This is also true of method-level behavior.

REACT also supports the ability to connect the processing of
different sequence diagrams together. REACT was able to identify a
logical flaw in a contractor design by simulating the execution of the
activity diagrams extracted from the sequence diagrams. The flaw was
discovered because a necessary pre-condition before a method invoca-
tion was not satisfied. Although UML tools generally provide support
object instance identification, UML descriptions frequently do not con-
tain object instance identifiers to facilitate the chaining together of
different sequence diagrams. It is important to know that an object
instance on one sequence diagram represents the same instance on an-
other sequence diagram. REACT’s model generation process lives with
this incompleteness (by issuing complaint warnings), but it is always
better to insist the UML developer directly provide these distinctions.

Use case-level Modeling
Modifications to REACT’s internal representation are being de-

fined to incorporate use case information that is not directly available
from UML. We implemented routines to parse the use case description
documents and generated several types of XML files that capture pre/
post conditions, flow diagram information, and triggering events. Some
manual interpretation of this data will be needed because the semantics
of natural wording is not often clear. In such instances recommenda-
tions for clarifying/correcting the use cases are made to the contractor
to minimize manual intervention. The ability to manage the evaluation
of pre and post conditions and support trigger and conditionals has been
developed. Our early prototype of this information created a light-
weight flow diagram that was significantly different than our more com-
prehensive representation of state/activity diagrams. In particular, one
problem we are working is the ability to auto-generate geometry infor-
mation for the auto-generated flow diagrams. Our provided use cases, of
course, do not have such information, but it turns out that such informa-
tion is quite valuable during simulation to support animation. Each
processing COA step will be identifiable via this translation. The result
of this automated translation will be a large number of condition and
action-list items needing parameterization similar to method-level mod-
eling. Techniques to automate this are being implemented, though some
manual intervention to identify natural text expressions for equivalent
semantics will be needed. Once this intervention is complete however, it
is possible to develop techniques to automatically reapply these equiva-
lences in later versions of the use cases. Later extensions to this work
could explore techniques to automatically suggest/perform mappings of
use case behaviors to method level behaviors, but this is currently quite
difficult because this mapping information is not available from the
contractor. This problem can be avoided by mapping COAs to method
level behavior.

Other REACT Modeling
Direct state/activity-level modeling is of course possible. When

state/activity diagrams are present, REACT’s model generation can pro-

Information Technology and Organizations 627

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

cess them. REACT is continuing to develop its internal representation
to support monitors and is developing techniques to support dynamic
reception/interpretation of model information. REACT will also pursue
advanced static analysis activities (deadlock detection, reachability, etc.)
and collect performance-related information derived from contractor
artifacts (e.g. traffic model simulation).

6. SUMMARY
We have shown how REACT’s aspect-oriented architectural as-

sessment approach is being applied to support architectural informa-
tional shortfalls frequently encountered in modeling large complex sys-
tems. The magnitude of the number of classes and methods and their
complex interactions requires automated techniques to understand their
behavior and identify architectural flaws early. With spiral develop-
ment cycles requiring frequent revisions to UML architectures, it is
necessary to provide flexible techniques that can perform analysis over
evolving architectural designs. We have shown how missing behavioral
information can be identified and provided with default behavior that
can later be refined automatically. With REACT’s aspect-oriented ap-
proach, aspects can be written to identify architectural sites of interest
and either modify, augment or map modeling information so that static
and dynamic assessments can be made. REACT’s automated translation
and simulation of sequence diagrams permits different levels of model-
ing granularity. REACT’s internal management of this model informa-
tion minimizes the amount of manual intervention required and permits
the reuse of prior data over those portions of the architecture that have
not changed.

ENDNOTES
1 In this approach, usually a generic actor is used to invoke the

method. The method invocation of course appears as a message from
the actor to an object instance of the class containing the method. This
object instance is called the principal participant because all of its inter-
actions from the point of invocation describe the behavior of the
method. Depending on the UML tool used, different levels of behavior

can be captured. Some UML tool vendors permit embedding control
logic within a sequence diagram.

2  2002 The Aerospace Corporation

REFERENCES
[1] Schmidt, Phillip, Milstein, Jaime, Duvall, Robert, Lankford,

Jeffrey, Rivera, Jesus, “Lessons Learned Using REACT: An Architec-
tural Testbed for Real-time Embedded Systems,” in Proceedings of the
2002 Information Resources Management Association International
Conference, Seattle WA, May 19-22, 2002.

[2] Schmidt, Phillip, Duvall, Robert, J. Lankford, G. Mulert, “Evalu-
ation of Aspects in UML Models,” in Proceedings of the Ground System
Architectures Workshop, March 13-15, 2002, The Aerospace Corpora-
tion, El Segundo, CA 90245. See http://sunset.usc.edu/gsaw

[3] Koskimies, Kai, Mannisto, Tatu, Systa, Tarja, Tuomi, Jyrki,
“SCED: A tool for Dynamic Modelling of Object Systems,” University
of Tampere, Department of Computer Science, Report A-1996-4, 1996.

[4] Koskimies, Kai, Systa, Tarja, Tuomi, Jyrki, Mannisto, Tatu,
“Automatic support for modeling OO software,” IEEE Software, Vol
15, Number 1 (1998) 42-50

[5] Koskimies, Kai, Makinen, Erkki, “Automatic synthesis of state
machines from trace diagrams.” Software – Practice and Experience,
24(7):643-658, July 1994.

[6] Khriss, Ismail, Elkoutbi, Mohammed, Keller, Rudolf, “Auto-
mating the Synthesis of UML StateChart Diagrams from Multiple Col-
laboration Diagrams,” in Lecture Notes in Computer Science 1618, ed-
ited by Bezivin, Jean and Muller, Pierre-Alain, The Unified Modeling
Language, UML 98: Beyond the Notation, p132-147, Selected Papers,
First International Workshop, Mulhouse, France, June 1998, Springer.

[7] Normark, Kurt, “Deriving Classes from Scenarios in Object-
oriented Design, May 1997, See http://www.cs.auc.dk/~normark/
dynamo.html

[8] Telelogic Tau UML/SDL Suite, www.telelogic.com
[9] I-Logix Rhapsody UML, www.ilogix.com
[10] See Communication of the ACM, October 2001, Vol. 44, No.

10.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/aspect-oriented-architectural-analysis-

using/32093

Related Content

Assessment in Academic Libraries
Gregory A. Smith (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 4823-

4832).

www.irma-international.org/chapter/assessment-in-academic-libraries/112928

Model-Driven Engineering of Composite Service Oriented Applications
Bill Karakostasand Yannis Zorgios (2011). International Journal of Information Technologies and Systems

Approach (pp. 23-37).

www.irma-international.org/article/model-driven-engineering-composite-service/51366

Using Metaheuristics as Soft Computing Techniques for Efficient Optimization
Sergio Nesmachnow (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7390-

7399).

www.irma-international.org/chapter/using-metaheuristics-as-soft-computing-techniques-for-efficient-optimization/112436

Metadata in Digital Audio
Kimmy Szeto (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 5957-5972).

www.irma-international.org/chapter/metadata-in-digital-audio/113053

In-Memory Analytics
Jorge Manjarrez-Sanchez (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

1806-1813).

www.irma-international.org/chapter/in-memory-analytics/183896

http://www.igi-global.com/proceeding-paper/aspect-oriented-architectural-analysis-using/32093
http://www.igi-global.com/proceeding-paper/aspect-oriented-architectural-analysis-using/32093
http://www.irma-international.org/chapter/assessment-in-academic-libraries/112928
http://www.irma-international.org/article/model-driven-engineering-composite-service/51366
http://www.irma-international.org/chapter/using-metaheuristics-as-soft-computing-techniques-for-efficient-optimization/112436
http://www.irma-international.org/chapter/metadata-in-digital-audio/113053
http://www.irma-international.org/chapter/in-memory-analytics/183896

