
Information Technology and Organizations 593

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
Component composition and Web-service composition have in common
that the usage pattern of a certain black-box component or Web-service
needs to be described precisely. Because usually many interactions between
the client and the service provider are required to obtain a certain desired
functionality, one would hope to find the specification of permissible
interaction sequences with the service provider in service description
formalisms, such as the WSDL. This paper shows an approach to
automatically generate such interaction specifications for service
descriptions from the XMI representation of UML sequence diagrams. It
uses an algebraic representation based on path expressions, which are
incorporated into the WSDL. The paper further argues for their value at
design and runtime.

1. INTRODUCTION
Complex software systems are increasingly built by composing

components and web-services, which are usually available as black box
entities. To achieve the intended behavior from the composed software
systems, it is essential that the usage of the constituent components be
syntactically and semantically correct. In the sequel we use the term
server component to refer to both a Web-service and a software compo-
nent [1].

The permissible usage of a server component is precisely specified
in what is called a contract. In addition to the standard syntactic con-
ventions, contracts should contain information on the behavior and
therefore functionality of the server component. Because valuable,
(re)usable server components are typically coarse-grained and provide
extensive functionality, obtaining more than trivial functionality re-
quires an involving interaction scenario between client and server. Be-
havior contracts are currently covered through formal assertions (e.g.,
pre and post conditions) that are restricted to individual methods. Since
the goal of clients is to obtain coherent pieces of functionality that
usually span over several methods, assertions related to methods are
insufficient. There are no widely accepted means for precisely specify-
ing and representing permissible invocation sequences in a standardized
form; a form that would allow tools to assist in coding and contract
enforcement at runtime. Consequently, we propose the usage of so-
called synchronization contracts for describing how to coherently uti-
lize a meaningful piece of functionality provided by the server compo-
nent. They were originally intended to specify how to deal with a server
component in parallel and distributed setups.

Almost all the information to generate synchronization contracts
is produced but hardly reused. Typically, server component designers
comprehensively specify the semantics of the interaction of the server
component with its environment by using UML design diagrams [2].
Due to their simplicity, sequence diagrams are most often employed to
model the permissible set of sequences of message invocation for plau-
sible usage scenarios of the server component. A set of sequence dia-
grams thus diagrammatically specifies the synchronization contract.
Based on that insight we propose an approach to automatically create
synchronization contracts from UML sequence diagrams. This approach

utilizes existing technologies and also draws upon existing research work.
The technologies are UML, the Metadata Interchange format XMI [3],
path expressions [4], and the Web-Service Description Language WSDL
[5].

The UML sequence diagrams (discussed in section 4.1) are first
transformed to XMI (section 4.2) using some standard tool. The XMI is
parsed, using any standard XML parser, to extract relevant information
for synchronization contracts. This information is then represented in
path expressions, which are some form of process algebra (section 4.3).
The path expressions are finally embedded in the WSDL specification
(section 4.4) of a Web-service, using some proposed new constructs.
Together with the specification of a contract it is also essential that the
contract be somehow enforced. Hence section 5 discusses the possible
usages of the synchronization contracts so generated. We conclude with
some remarks on open issues (section 6). For details on the employed
technologies, the user is referred to referenced publications in the rel-
evant sections.

2. RELATED WORK
In the context of this work, the notions of contract as used in the

software component community are most relevant [6] [7]. Four types
or levels of contracts for software components are identified: basic or
syntactic, behavioral, synchronization, and quality-of-service.

Typically, programmers use the likes of Interface Definition Lan-
guage (IDL) and C++ header files for the specification and usage of
syntactic contracts. In some languages (like Eiffel [8] or contract ex-
tensions to Java [9]) pre and post conditions, and invariant formalisms
are available for specifying and using behavior contracts. In essence,
behavioral contracts specify what the client can expect on proper invo-
cation of a specific functionality, i.e., a specific method. Synchroniza-
tion contracts refer to the definitions that shall specify how a software
component can cope with parallelism in distributed setups. Synchroni-
zation has been dealt with in various domains in computer science. In
[4] Campbell and Habermann discuss path expressions as a means of
specifying synchronization of processes in operating systems. This for-
malism is also suggested in [6] and further elaborated on in [10] to
specify synchronization issues in software components. However, we
propose to extend synchronization contracts to explicitly specify se-
mantically coherent server usage scenarios, i.e., to define the sets of
permissible sequences of message invocations.

The notion of a contract is also found in Web-service descriptions.
WSDL specifies in which way Web-services have to publish their fea-
tures. However, it does not go beyond syntactical conventions and from
a functional viewpoint can be compared to current IDLs, which are used
in distributed object technologies. The business need for formalisms to
describe interaction patterns for Web-services is supported by the fact
that standardization attempts like the WSFL [11] try to formalize how
business functionality can be realized by collaborating Web-services. It
is different to our approach in its intent to describe the overall interac-
tion scenario of several Web-services and not contractually specify a

Generating Synchronization Contracts
for Web Services

 Otto Preiss Anuj P Shah Alain Wegmann
 Dept. of Information Technologies Dept. of Industrial and Systems Engineering School of Computer and Communications
ABB Switzerland LtdCorporate Research GA Inst. of Technology324919 GA Tech Station Swiss Federal Inst. of Technology

 5405 Dättwil, Switzerland Atlanta, GA 30332-1030 1015 Lausanne, Switzerland
 otto.preiss@ch.abb.com ashah@isye.gatech.edu alain.wegmann@epfl.ch

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

594 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

single server component. Further, it is one more language in addition to
WSDL and not a natural extension to WSDL, as is our proposal.

A third area of related work in specifying the interaction behavior
of black-box entities, e.g., programming language classes, is based on
state diagrams. For instance, the development methods Fusion [12] or
Fondue [13] employ state diagrams to depict what they call system life-
cycle model and system interface protocol, respectively. The approach
differs to ours in that, firstly, the state diagrams specify all possible
transitions (method invocations) without giving a hint to semantically
meaningful invocation sequences; secondly, the state diagram represen-
tation is not represented textually in a contract and consequently not
proposed as feasible extension to existing contract technologies.

3. THE RUNNING EXAMPLE
We use a simple running example to illustrate our approach: A

bank offers its services to its customers by providing a large set of Web-
services to access common functionality like accessing balance infor-
mation or allowing the clients to transfer money from one account to
another.

A part of the Web-services is the account transfer service provided
by a bank account transfer server component. For reasons of simplicity,
the server component implements just one interface with three meth-
ods:
M1: getAuthorization([in]Account, [in]ClientID, [out]TransactionID)
M2: withdraw([in]Account, [in]amount, [in]TransactionID)
M3: deposit([in]Account, [in]amount, [in]TransactionID)

To transfer money from one account to another, the permissible
sequence for a single transaction, identified by the transaction identifi-
cation (TransactionID), is:

M1 -> M2 -> M3.
There is no other permissible sequence to use the account transfer

component. Hence, client software shall not try to do so and the com-
ponent shall not have to check all other eventualities for a possible
misuse. But such a synchronization contract, though intended, is not
explicitly stated.

4. AUTOMATIC CREATION OF SYNCHRONIZATION
CONTRACTS

4.1. The UML Sequence Diagram
The sequence diagram, shown in Figure 1, models the synchronous

message calls on the bank account transfer component. It shows the
only permissible sequence of operations or method calls for transferring
money from one account to another. All other sequences of method
calls, on this component, are not modeled here and would thus be con-
sidered a “misuse of the component”. This sequence diagram graphically
represents important pieces of the synchronization contract for the
bank account interface.

Note that it is assumed that all possible sequences of message calls
on a server component are modeled and made available through se-
quence diagrams. The synchronization contract would otherwise be in-
complete, and the contract enforcement entities (discussed in Section
5) would over constrain the usage of the server component.

4.2. The XMI Representation
XMI [3] is a XML based OMG standard to textually represent and

interchange meta-model information. A XML DTD has been defined
therein to represent UML diagrams in XMI.

A UML sequence diagram models the synchronization of message
invocations between the participants in a Collaboration. Each sequence
diagram represents one possible synchronization pattern of a set of
participants. The same participants could appear in multiple diagrams
to exhibit other synchronization patterns or interactions amongst them.
Hence, all sequence diagrams could be represented in a single or multiple
XMI files.

Each participant exhibits a specific Role as an instance of some
specific Class. Therefore, before generating the XMI representation of
the collaboration or the dynamic model of the software system, the
XMI representation of the static model, i.e. the definition of data-
types, interfaces and classifiers, is created. The interactions or message
sequences are documented by tagging the message entities with con-
structs defining preceding and following message entities. The actions
to be taken on message invocation are also listed to complete the XMI
representation of the diagram.

In the following we use our bank account example to exemplify the
above. We used [14] to generate the XMI representation from our
sequence diagram.

The first step, which consists of the syntactical type conventions
of the Client and the BankAccountTransfer server component repre-
sented in XMI, is not shown here.

Second, to be able to represent the behavioral model, the roles of
the BankAccountTransfer (Figure 2) and the Client are described. The
XMI representation for the role lists the ID (UML:ClassifierRole.base)
of the base classifier with the available set of features or operations
(UML:ClassifierRole.availableFeature) of this role and the utilized set
of messages (UML:ClassifierRole.message1).

To represent the interaction, the messages exchanged between the
participants are documented to necessary detail. An extract of the docu-
ment for the ‘withdraw’ message for our BankAccountTransfer sequence
diagram is given in Figure 3. The XMI representation of the message
includes details of the message sender (the Client), the receiver (the
BankAccountTransfer server component), the message that follows the
‘withdraw’ (UML:Message.message3, which is the ‘deposit’), the prede-
cessor message (UML:Message.predecessor, which is the
‘getAuthorization’), and finally the action to be taken on the invoca-
tion of the ‘withdraw’ message.

In summary, the XMI representation of the sequence diagram com-
pletely specifies the information needed for the synchronization con-
tract. Further, the information can easily be accessed utilizing a standard
XML parser.

Figure 1: Sequence diagram for the bank account transfer example

Client 1 : Client BAT 1 :
BankAccountTransfer

getAuthorization(Account, ClientID, TransactionID)

withdraw(Account, Currency, TransactionID)

deposit(Account, Currency, TransactionID)

Figure 2: XMI representation of the BankAccountTransfer role

<UML:ClassifierRole xmi.id = ‘clsRlBankAccountTransfer1’ name
= ‘BAT 1’>

 <UML:ClassifierRole.base>
<Classifier xmi.idref = ‘clsBankAccountTransfer’/>
 </UML:ClassifierRole.base>

 <UML:ClassifierRole.availableFeature>
<Feature xmi.idref = ‘oprGetAuthorization’/>
<Feature xmi.idref = ‘oprWithdraw’/>
<Feature xmi.idref = ‘oprDeposit’/>
 </UML:ClassifierRole.availableFeature>

 <UML:ClassifierRole.message1>
<Message xmi.idref = ‘msgGetAuthorization’/>
<Message xmi.idref = ‘msgWithdraw’/>
<Message xmi.idref = ‘msgDeposit’/>
 </UML:ClassifierRole.message1>
</UML:ClassifierRole>

Information Technology and Organizations 595

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

4.3. The Algebraic Representation
Based on the original ideas of Campbell and Habermann [4] we

suggest including a so-called path expression into the declarative type
information of a server component. This construct describes how an
instance of that type may be used by one or several client components.
While the original authors proposed the method for synchronizing be-
tween procedure executions by different processes (with its main appli-
cation to operating systems), we see the value not only in the integrity
protection of a server component with respect to multiple client com-
ponents but also in the unambiguous description of the permissible se-
quence of method invocations to obtain a desired functionality that is
relevant for one client only.

We briefly present those parts of the formalism that are needed to
comprehend the running example. For details, we refer to [4] [15]. For
our purpose, a path expression expresses the temporal relationships
between the methods identified for a component server. It specifies the
sequence (with notation “;”), single selections among alternatives (“,”),
and parallelism of methods (“{}”).

Hence, A;B;C specifies that these methods must be in sequence
starting with A. A,B specifies that only A or B may be called. And, {A}
defines that a number of client components may invoke A in parallel.
Combinations of these basic constructs are possible.

We expect to obtain the path expression for a server component
by examining the interaction scenario between a client and server repre-
sented in XMI. With respect to our running example, we need to con-
sider the type information for the BankAccountTransfer server com-
ponent by parsing the XMI for the static classifier type information
(<Classifier xmi.idref = ‘clsBankAccountTransfer’/>) and its defined
messages (<UML:ClassifierRole.message1>) in the context of one spe-
cific client component (or sender as it is called in the XMI
<UML:Message.sender> tag). This lets us construct the expression
below as the one described permissible scenario:

msgGetAuthorization; msgWithdraw; msgDeposit;

4.4. The WSDL Representation
The Web Service Description Language (WSDL [5]) is an XML

format for the abstract description of services (“abstract endpoints” as
they are called in the standard) in the form of operations and messages.

The abstract descriptions are then bound to a concrete network proto-
col and message format (e.g. SOAP on http).

In general, WSDL consists of five major parts: type descriptions of
the exchanged data (enclosed in the <types> tag block), the port type
definitions (enclosed in the <portType> tag block), the service defini-
tion (enclosed in the <service> tag block), and the messages and bindings
(not shown here). A service can have a number of service ports and a
service port a number of operations.

For our purpose of expressing permissible sequences of operation
invocations, we propose a new port type related construct enclosed in a
<path> </path> tag pair, which shall hold the path expression related
information. The construct extends the “port” definitions of a service.
Figure 4 depicts the relevant part of a WSDL description for our running
example. The portType with name ”BankAccountTransfer” has been
extended with a path definition called “anyPath”. This path expression
is valid for accessing the service ”BankAccountTransfer”, which con-
forms to the port type definitions of the same name.

It should be noted that although the example is trivial, any form of
path expression could of course be represented in that way. The path
expression formalism not only allows capturing sequences, alternatives,
etc. but also supports nesting.

5. USAGE OF SYNCHRONIZATION CONTRACTS
If we assume the existence and accessibility of a synchronization

contract as discussed in the previous sections, development environ-
ments can make use of it and provide tool automation support at client
and server design time. Further, contracts may also serve as the basis for
guard functionality to protect the server at runtime from unwanted
interaction sequences.

5.1. Client Design Time Support
Since the synchronization contracts are machine process-able, de-

velopment environments can raise their level of automation. For devel-

Figure 3: XMI representation of the ‘withdraw’ message

<UML:Message xmi.id = ‘msgWithdraw’ name =
‘withdraw(Account, TransactionID, Currency)’>

 <UML:Message.sender>
<ClassifierRole xmi.idref = ‘clsRlClient1’/>
 </UML:Message.sender>

 <UML:Message.receiver>
<ClassifierRole xmi.idref = ‘clsRlBankAccountTransfer1’/>
 </UML:Message.receiver>

 <UML:Message.message3>
<Message xmi.idref = ‘msgDeposit’/>
 </UML:Message.message3>
 <UML:Message.predecessor>
<Message xmi.idref = ‘msgGetAuthorization’/>
 </UML:Message.predecessor>

 <UML:Message.communicationConnection>
<AssociationRole xmi.idref = ‘assocRlBAT_Client’/>
 </UML:Message.communicationConnection>

 <UML:Message.action>
<Action xmi.idref = ‘callActionWithdraw’/>
 </UML:Message.action>
</UML:Message>

Figure 4: Extended WSDL representation

<?xml version=”1.0"?>
<definitions name=”BankTransfer”
...
 <types>
 ...
 </types>
...
 <portType name=”BankAccountTransfer”>
 <operation name=”GetAuthorization”>
 ...
 <operation name=”Withdraw”>
 ...
 <operation name=”Deposit”>
 ...
 <path name=”anyPath”>
<expression=”GetAuthorization;
 Withdraw;
 Deposit”>

 </expression>
 </path>
 </portType>
...
 <service name=”BankAccountTransfer”>
 <documentation>Service to transfer
 ...
 </documentation>
 <port name=” BankAccountTransfer “>
 </port>
 </service>

</definitions>

596 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

oping client-side software we envision three levels of contract-aware
coding support:
(a) Provision of code completion facilities; similar to today’s code comple-

tion facilities, where the source code editors provide context sensitive
drop down lists with attribute or method options that could follow the
chosen variable name, synchronization contracts may further limit
the options by presenting only those methods that would still be in
proper sequencing.

(b) Provision of basic code skeletons; source code editors could be en-
hanced to provide entire method sequence skeletons that can be se-
lected by the programmer from the choice of possible paths. If the
paths in the synchronization contract were even augmented with tex-
tual identification of use cases or collaborations, programmers could
choose among these “high level” code skeleton options.

(c) Provision of compile time verification; compilers can be enhanced to
verify client source code for proper sequences of method calls to
server objects.

Note, similar kinds of tool-based automation are of course also
conceivable at modeling time. E.g., the path information can also be
used to support the construction of UML object diagrams, collaboration
diagrams, and sequence diagrams in which existing Web-services or com-
ponents are part of.

5.1. Server Design- and Runtime Support
The gain at server design time lies in relieving the programmer

from taking counter measures to deal with unwanted sequences of client
calls. Further, guard construction (see below) can be automated.

The runtime support at server side is grounded in the possibility to
provide specific guards that verify contract adherence at runtime, i.e.,
to make sure that only permissible sequences of client calls are dis-
patched to the server and an appropriate exception handling is acti-
vated otherwise. In general, some form of interception mechanism must
assure the execution of guard functionality.

Since path expressions can be transformed into state diagrams
quite easily, it is also possible to automate the generation of guard code.
A possible algorithm is presented in [4]. There are a number of feasible
design options for guard implementations in current distributed tech-
nologies. For instance, an implementation can be in the form of policy
objects as defined in COM+ [16], or it can be an extension to the current
proxy and stub constructs in Microsoft COM or stub and skeleton in
OMG’s CORBA. To have more fine grained control, it is of course also
conceivable that guards are implemented by the programmer as part of
the Web-service or software component, e.g. in the form of façade
objects [17].

6. CONCLUSIONS
Most of today’s software is built by composing components and

services, and it appears that future will see even more development in
this fashion. The components are available as black box entities, the
precise specification of the permissible usage of which is documented in
software contracts. For software assemblies to work as intended and to
aid the software development process, it is required that contracts be
comprehensively specified and made available in easy to interpret, ma-
chine-readable form. This is important to save effort of the designers
and the developers by automating the process of specifying and imple-
menting contracts, from the design stage itself.

We proposed a way of specifying synchronization contracts, in
addition to the existing syntactic and behavioral contracts. The con-
tract is specified in a simple and precise form without having the devel-
oper go through hardly-ever-adopted formalisms. Existing technologies
have been utilized not only for the specification but also for showing the
feasibility of a process for automatically generating synchronization
contracts. Based on our general observation, the process assumes that
the designers employ UML sequence diagrams for specifying the syn-
chronization characteristics of the server components. However, the
developers may choose to utilize other modeling aids like state dia-
grams. Though our approach will not be directly applicable in that case,

the basic process of extracting information from a UML diagram in
XMI and then mapping it over to path expressions can still be utilized.
The utilization of sequence diagrams, as they are currently defined in
UML 1.3, only supports our limited usage of synchronization contracts,
i.e. parallelism or repetition is not explicitly taken care of. UML exten-
sions, partly proposed in real-time communities, or agreed upon anno-
tations of sequence diagrams could overcome these deficiencies. An-
other potential shortcoming in our approach is to over-constrain a
server component. This happens if the server designer makes an incom-
plete design, i.e. if she chooses to model only one (or a few) out of many
possible interactions to obtain the same functionality. This could then
prevent the client from using an invocation sequence that would not
have harmed the server, but it would also not prevent the client from
obtaining the sought after functionality.

Having processes and tools in place, which automatically generate
the information on how to properly collaborate with a server compo-
nent to obtain a coherent piece of functionality, would more explicitly
support the goals of (re-)users and significantly ease development of
complex software.

REFERENCES
[1] C. Szyperski, Component Software - Beyond Object-Oriented

Programming. Reading, Massachusetts: Addison-Wesley, 1998.
[2] OMG, “Unified Modeling Language V1.3,” , Specification,

June 1999.
[3] OMG-XMI-RTF, “XML Metadata Interchange (XMI) Ver-

sion 1.1,” Object Management Group OMG Document ad/99-10-02,
October 25 1999.

[4] R. H. Campbell and A. N. Habermann, “The Specification of
Process Synchronization by Path Expression,” in Proc. International
Symposium on Operating Systems, 1973, pp. 89-102.

[5] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web Services Description Language (WSDL) 1.1,” Ariba, IBM,
Microsoft, Submission to W3C Note, March 15 2001.

[6] A. Beugnard, J.-M. Jezeguel, N. Plouzeau, and D. Watkins,
“Making Components Contract Aware,” IEEE Computer, vol. 32, pp.
38-45, July 1999.

[7] QCCS. (2002, Jan). Quality Controlled Component-Based
Software Development. European Community IST Project-1999-20122
[Online]. Available: http://www.qccs.org/

[8] B. Meyer, Eiffel: The Language, 2 ed. London: Prentice Hall,
1992.

[9] M. Wiedmann, H. Buchwald, and D. Seese, “Design by Con-
tract in Java - a Roadmap to Excellence in Trusted Components,”
INFORMATIK, pp. 9-14, 2000.

[10] D. Watkins, “Using Interface Definition Languages to Sup-
port Path Expressions and Programming by Contract,” in Proc. Tech-
nology of Object-Oriented Languages and Systems (TOOLS 26), 1998,
pp. 308-319.

[11] F. Leyman, “Web Services Flow Language (WSFL 1.0),” IBM
Software Group, May 2001.

[12] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F.
Hayes, and P. Jeremaes, Object-Oriented Method: The Fusion Method.
London: Prentice Hall, 1994.

[13] S. Sendall and A. Strohmeier, “Specifying Concurrent System
Behavior and Timing Constraints Using OCL and UML,” in Proc. UML
2001 - The Unified Modeling Language: Modeling Languages, Con-
cepts and Tools, 2001, pp. 391-405.

[14] Unysis. (2002, March). Unysis XML Tools for Rose. Unysis
Corporation [Online]. Available: http://www.rational.com/support/
downloadcenter/addins/rose/index.jsp

[15] O. Rees, “Using path expressions as concurrency guards,”
ANSA, Cambridge, Technical report TR.022.00, February 24 1993.

[16] D. S. Platt, Understanding COM+. Redmond, WA: Microsoft
Press, 1999.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software. Reading,
Massachusetts: Addison-Wesley, 1995.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/generating-synchronization-contracts-

web-services/32084

Related Content

Mobile Game-Based Learning in STEM Subjects
Marcelo Leandro Eichler, Gabriela Trindade Perry, Ivana Lima Lucchesiand Thiago Troina Melendez

(2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 6376-6387).

www.irma-international.org/chapter/mobile-game-based-learning-in-stem-subjects/184334

Parallel and Distributed Pattern Mining
Ishak H.A Meddahand Nour El Houda REMIL (2019). International Journal of Rough Sets and Data

Analysis (pp. 1-17).

www.irma-international.org/article/parallel-and-distributed-pattern-mining/251898

Data Recognition for Multi-Source Heterogeneous Experimental Detection in Cloud Edge

Collaboratives
Yang Yubo, Meng Jing, Duan Xiaomeng, Bai Jingfenand Jin Yang (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/data-recognition-for-multi-source-heterogeneous-experimental-detection-in-cloud-

edge-collaboratives/330986

Sustainability in Information and Communication Technologies
Clara Silveiraand Leonilde Reis (2021). Handbook of Research on Multidisciplinary Approaches to

Entrepreneurship, Innovation, and ICTs (pp. 375-396).

www.irma-international.org/chapter/sustainability-in-information-and-communication-technologies/260566

Model for Assessment of Environmental Responsibility in Health Care Organizations
María Carmen Carnero (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

3131-3143).

www.irma-international.org/chapter/model-for-assessment-of-environmental-responsibility-in-health-care-

organizations/184024

http://www.igi-global.com/proceeding-paper/generating-synchronization-contracts-web-services/32084
http://www.igi-global.com/proceeding-paper/generating-synchronization-contracts-web-services/32084
http://www.irma-international.org/chapter/mobile-game-based-learning-in-stem-subjects/184334
http://www.irma-international.org/article/parallel-and-distributed-pattern-mining/251898
http://www.irma-international.org/article/data-recognition-for-multi-source-heterogeneous-experimental-detection-in-cloud-edge-collaboratives/330986
http://www.irma-international.org/article/data-recognition-for-multi-source-heterogeneous-experimental-detection-in-cloud-edge-collaboratives/330986
http://www.irma-international.org/chapter/sustainability-in-information-and-communication-technologies/260566
http://www.irma-international.org/chapter/model-for-assessment-of-environmental-responsibility-in-health-care-organizations/184024
http://www.irma-international.org/chapter/model-for-assessment-of-environmental-responsibility-in-health-care-organizations/184024

