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ABSTRACT
The high cost of software maintenance continues to be a great concern for
many organizations due to poor data quality that plagues most legacy
database systems.  It is proposed in this paper that neural net technology
be used to accommodate changes in user requirements when data quality
is an issue.  Neural nets can be trained to identify semantically equivalent
data such that source code modifications do not have to be made.  A case
study is used to illustrate the use of neural nets to replace source code in
identifying duplicate data within and across databases even when data is
incorrect or incomplete.

INTRODUCTION
Software maintenance continues to challenge both practitioners

and researchers alike because of its costs and resource requirements
when modifications and enhancements are made to a software system
(O’Neal and Carver, 2001; Zhou, et al., 1999).  Most software systems
are not only large, in terms of source code, but lack proper documenta-
tion as to how they are integrated with other system components (Kajko-
Mattsson, et al., 2001).   As a result, software maintenance is often
considered the most difficult aspect of software production because even
simple changes can be costly to an organization (Shirabad et al., 2001).
Perhaps more importantly, changes to the system may result in corrup-
tion of other system components because of a lack of understanding of
the overall system architecture.  Today, it is estimated that sixty to
eighty percent of the total software budget is used to support software
maintenance (Stark and Oman, 1997).

Much of the current research on software maintenance focuses on
managing functional changes to the source code and other software
artifacts.  Little has been done in terms of addressing software mainte-
nance from a database perspective, though legacy data continues to be a
major part of the maintenance issue. Existing legacy database systems,
often required as an integral component of software systems, tend to be
filled with incorrect, incomplete, or incompatible data (English, 1999).
Legacy databases can add a layer of complexity when trying to modify
existing components, as the results may be unpredictable due to poor
data quality.  Perhaps the most pertinent example of poor data quality
was the Y2K problem, which cost organizations trillions of dollars.
What is needed then is a means of addressing the data quality issue in
order to maintain high-quality software applications.

With the introduction of new technologies, such as provided by the
Internet, software systems are being modified to integrate data across
new and legacy database systems.  Unfortunately, data may not in be the
same data format, differ in data type and length, and may be cryptic,
incorrect or incomplete. As a result, it is difficult to determine whether
data is semantically the same when integrating data across software
applications.  Though there has been much work done on data cleaning,
in order to address the data quality issue, it is often prohibitively expen-

sive.  The end result is that data quality compounds the sky-rocketing
cost and resource consumption associated with software maintenance.
What is needed is a means of determining whether data is semantically
equivalent when data quality is an issue during the software maintenance
process.

In addition to dealing with the data quality issue, organizations are
also struggling with source code updates while adapting systems to ac-
commodate changing user requirements (Bohner, 1996; Lehman, 1994).
We propose a technique for minimizing the cost of software mainte-
nance associated with poor data quality while addressing the source code
update problem.  This innovative approach incorporates the handling
of syntactic differences among data from multiple sources in the source
code.  Neural net technology is used to draw conclusions about the
semantic equivalence of data across multiple databases based on a learn-
ing algorithm.  Source code is modified to include probabilities of data
equivalence even when data is syntactically incorrect or incomplete.

THE SOURCE CODE ISSUE
A difficult software maintenance problem resulting from merging

or integrating heterogeneous databases is the discovery of  records that
semantically represent the same object but are syntactically different.
Because of this complexity, semantic rules are often applied to the data
to uncover data duplication.  These records would often require further
manual inspection  to determine whether they are the same even when
data is syntactically different.   A semantic rule, for example, might
require an inspection of primary and foreign key data to determine
semantic equivalence even when part of the data is missing, incorrect,
or cryptic.  This data discrepancy may have happened when edit checks
and data integrity constraints were missing from the original design.

In the business community, solving the data duplication problem
by matching data based on semantic equivalence is called the “merge/
purge problem”.  The merge/purge problem refers to the process of
identifying duplicate records that semantically refer to the same entity
and then merging them to constitute one syntactic and semantic entity
(Hernandez & Stolfo, 1995).   Data integration does not require that
data are merged into one entity, but that data can be linked from one
source to another via semantic equivalence.  This is often achieved via
a primary key and foreign key relationship within and across database
systems.

In either case, a major challenge is determining appropriate busi-
ness rules that identify semantic similarities between records.  These
rules may be found in the software documentation (specification an
design artifacts), or they may have to be extracted from the physical
design by reengineering relationships among data within and across da-
tabase systems.  For example, we may have a rule that specifies two
customer records representing the same object if their social security
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numbers match. This rule is typically part of the source code when
manipulating the database components of the software system.  The
problem is that too often the same data may not be a 100% match
because of poor data quality within and across databases.  Because the
source code would require an “all or nothing” data match, expensive
data cleaning may be needed to resolve data quality problems.

Illustration
A data integration problem is presented for a fictitious business

that has developed a web-based system inclusive of a database to process
online customer orders.  This new system is integrated with a legacy
database, which contains data about existing customers and their credit
ratings.  This information is used to determine whether an online order
should be processed given the customer’s credit status with the organiza-
tion.

Let’s say that we are given a customer table to handle new online
customers: 

CustomerOnline (CustomerID, LastName, FirstName, MiddleInitial,
EmailAddress, AreaCode, PhoneNumber, ExistingCust#).

There is an existing legacy database with customer mail order data
used before the inception of the online system:

CustomerMailOrder (Customer#, CreditRating, RatingDate).

Data is integrated via ExistingCust# (foreign key in
CustomerOnline) and Customer# (primary key in CustomerMailOrder)
because of their matching datatypes representing semantic equivalence.
The Customer# is almost always unique but there are duplicate numbers
for different customers and partial data due to missing integrity con-
straints. Given this scenario, it would be difficult to ensure that a new
customer record is not inserted into the CustomerOnline table without a
link to the CustomerMailOrder table when there is a semantically match-
ing record. The psuedocode, shown below, would code this relationship
into an online application:

If CustomerID= Customer#
\* record exists in CustomerMailOrder *\
Insert CustomerOnline record with foreign key ExistingCust# =
SocialSecurity#
Else

Insert new customer record into CustomerOnline with ExistingCust#
set to NULL

End If.

Notice that the problem with this source code is that it only matches
correct and complete data that hasn’t been corrupted by long-term
use.  

It is proposed that neural net technology be used to improve data
retrieval even when data quality is poor.  The use of neural net technol-
ogy in this application adds the flexibility of retrieving records that are
semantically the same even though the physical data is not a 100%
match. Inflexible, hard-coded rules can be replaced by a set of training
examples that minimize the effect of the changes on the source code as
well as data quality in existing database systems.

This paper proposes the use of a backpropagation neural net to
replace source code for identifying data matches in databases. The use of
a backpropagation neural net provides a learning process mechanism
for uncovering semantic equivalence among data. A main advantage to
this approach is that source code does not have to change whenever a
rule for discovering data matches changes.

DISCOVERING DUPLICATE DATA USING
BACKPROPAGATION

Backpropagation neural nets have proven to be very effective for
a broad range of problems, but are especially useful when there is a large
data pool to use during the learning process. Because backpropagation is
very useful in recognizing complex patterns in existing data, it is suit-

Figure 1:  Neural Net Architecture

 

able for identifying data duplicates in existing database systems. It has
been shown that a neural net can recognize most test patterns (specify-
ing data duplication) after it has been trained to do so (Al-Namlah, et al.,
2002).

The neural net, as shown in Figure 1, is made up of number of
highly interconnected input, hidden, and output processing units (Fausett,
1994).  The weighted connections between the units are used to store
the acquired knowledge.  The knowledge is obtained through a training
process that uses a data file for training the net.

The Learning Process
Data duplication within and across databases can be discovered

using backpropagation via a simple algorithm that selects a set of records,
based on some condition, in order to determine data equivalence.  Then,
percentages of data matching are used as a learning mechanism for the
backpropagation algorithm.  In this way, the algorithm can be trained to
discover duplicate data.

A three-step approach was proposed by Al-Namlah and Becker
(2002) in order to use backpropagation to provide feedback on the
quality of a data source. This approach was applied in a limited fashion
in order to specifically train the backpropagation neural net on what
constitutes duplicate records in a database system.  The output of the
neural net was used to draw conclusions based on its statistical input.  In
this research, the input to the net was based on existing data quality, as
defined by pattern matching in the existing data.  This early work is used
as a basis for finding duplicate data in order to address the software
maintenance problem.

Training Example
During the training phase of building the neural net, rules are iden-

tified from which learning can occur.  The following example illustrates
one of the rules that have been extracted from existing data in a data-
base. Rules are defined in terms of the percentages associated with data
matching between data records.

Rule: Unique identifier data matches 100% and event-driven data
has low match rate.

Records Retrieved:

FNAME MI LNAME SSN DOB ADDRESS            GENDER SAL SUPERSSN D# 
Franklin T Wong 333445555 08-dec-45 638 Voss, 

Houston TX 
M 40000 888665555 5 

Frank S  Wong 333445555 08-dec-45 638 Voxx, 
Houstojn, TX 

M 18000 987654321  
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using neural net technology requires no changes to software artifacts
inclusive of source code.

CASE STUDY
In this case study, a neural net was built using a backpropagation

algorithm and trained to recognize duplicate records.  The neural net
consisted of 10 input units, one hidden layer with four units and one
output unit. The Nguyen-Widrow method (Nguyen and Widrow, 1990)
was used to initialize the weights.

Training Set Data
Table 1 shows the training set data with their targets.
Each row in the Training Patterns table contains a set of percent-

ages, representing the extent of data equivalence, when two database
records are compared.  Each column in the table contains a percentage
that represents syntactic equivalence when two data values in the records
are compared.  For example, the “63 %” value in the Pattern Number 1
row represents the extent to which two FNAME data values match.
Based on the overall percentage of data matching between records, a
data duplication value is assigned to each Pattern Number row.  These
values, listed in the Target column, specify data duplication (value of
“+1”) or non-duplication (value of “–1”).  This target data is used to
train the net to determine whether two records are semantically the
same.

Notice that there is an implicit rule, “LNAME, SSN, and DOB
must match 100%”, for semantic equivalence between two records to
hold. This rule is implemented within the training set data such that if all
three field values are “1” (100% match) then the target value is set to
“+1”.

Table 2 provides information about five patterns, each of which
represents data matching between two records.  The neural net was used
to determine whether the records were semantically the same given the
percentages in the testing pattern columns.  Notice that Pattern Num-
ber 1, for example, is assigned a 100% (“+1”) probability of being
duplicate records; whereas, Pattern Number 4 is assigned a 100% prob-
ability (“-1”) of not being duplicate records.  By reviewing all five
patterns, it is seen that the neural net has learned the rule (100% match
of the three fields LNAME, SSN and DOB is required to conclude data
duplication).

Next, we illustrate how neural net technology can be used to ac-
commodate changes in user requirements. Let’s say that user require-
ments changed such that DOB no longer must be a 100% data match.

Table 1: Training Patterns Used to Train the Neural Net

Pattern 
Number 

Training Pattern 
  FNAME   MI   LNAME   SSN      DOB    ADDRESS   GENDER  SAL     SUPERSSN     D# 

Target 

1 +1 
2 +1 
3 +1 
4 - 1 
5 - 1 
6 - 1 
7 +1 
8 +1 
9 +1 
10 - 1 
11 - 1 
12 

0.63 0 1 1 1 0.76 1 0.6 0.25 0 
0.8 0 1 1 1 0.77 1 0.4 0.33 0 
0.77 0 1 1 1 0.78 1 0.55 0.44 1 
0.66 0 1 1 0.5 1 0 0.66 1 0 
0.54 0 1 1 0.4 1 0 0.77 1 0 
0.88 1 1 1 0.3 1 1 0.88 1 1 
0.77 0 1 1 1 0.66 1 0.55 0.44 0 
0.44 1 1 1 1 0.33 0 0.2 0.11 0 
0.22 0 1 1 1 0.16 1 0.33 0.16 1 
0.8 1 1 1 0.6 1 0 0.57 1 0 
0.7 0 1 1 0.55 0.8 1 0.6 0.7 1 
0.98 1 1 1 0.7 0.7 1 0.9 1 0  - 1 

 

Pattern 
Number 

Testing Pattern 
  FNAME    MI     LNAME   SSN      DOB    ADDRESS GENDER   SAL    SUPERSSN      D# 

Result 

1 +1.00 
2 + 0.99 
3 -1.00 
4 - 1.00 
5 

0.63 0 1 1 1 0.76 1 0.6 0.25 0 
0.77 0 1 1 1 0.9 0.7 0.7 0.25 0 
0 1 0.1 0.1 0.1 0.6 0.22 1 1 0.11 
0 1 1 1 0.1 0.6 0.22 1 1 0.11 
0 1 1 1 0.9 0.6 0.22 1 1 0.11  -0.99 

 

Table 2: Testing Set Results

Data Matching Percentages:

The data matching percentages, for these two records, are pre-
sented above.  In this case, the social security number (SSN), date of
birth (DOB), gender and last name (LNAME) are 100% matches.  Be-
cause these data fields are typically used in databases as part of the
unique identifier (or alternate identifiers), data duplication appears to
hold.  Further analysis of data matching shows that the event-driven
data, salary (SAL), supervisor (SUPERSSN) and department (D#) data,
differ significantly.  However, these low data matching percentagess are
considered a reflection of event-driven data.  For this scenario, the net
would be trained to detect record duplication.

Rule Implementation Without Neural Net Technology
In the example above, a rule has been specified as such, “if the

LNAME, SSN and DOB in two data records are exactly the same, then a
match occurs.” This rule can be coded as (pseudocode):

If   (S.LNAME = T.LNAME) and
      (S.SSN = T.SSN) and
      (S.DOB = T.DOB) then
      S and T are semantically equivalent
Else
     S and T are not semantically equivalent
End If.
Where S the source record and T is the target record.

When data quality is poor, the rule can be modified to add probabil-
ity of semantic equivalence.  For example, the rule may specify that the
DOB in two records must be a 90% or greater match in order to be
considered semantically equivalent. The code is updated as follows:

If  (S.LNAME = T.LNAME) and
     (S.SSN = T.SSN) and
     Match (S.DOB = T.DOB) ³ 0.9 then
     S and T are semantically equivalent
Else
    S and T are not semantically equivalent
End If.

Note: Match is a function (not shown) determining semantic equivalence
between two records.

Although this user requirement appears to require a trivial change
in the source code, there are maintenance costs associated with it.  The
new function will need to be tested, recompiled and executed. Software
artifacts will have to be updated and validated.  These artifacts may
include system specifications, user requirements, source code, user manu-
als, configuration management systems, and user interface designs.  It is
proposed that neural net technology replace the source code function
called Match in order to minimize software maintenance.

Rule Implementation With Neural Net Technology
Using the backpropagation algorithm, this modified rule can be

readily supported via neural net technology by adding another example
to the training set that shows a 90% percent match when two DOB data
values are equivalent. The new training pattern will eliminate the strict
condition that required a 100% match for the DOB field.  The neural net
will continue to adapt to new user requirements by learning from train-
ing examples and changing the weights accordingly.

In, general, the only maintenance needed to satisfy new user re-
quirements is adding one or more training pairs to the training set.  It is
true that weighted connections will be changed when adding a training
pair(s) to the training set; however, the weighted connections are changed
automatically without manual intervention. It is important to note that

FNAME MI LNAME SSN DOB ADDRESS    GENDER SALARY SUPERSSN D# 
63 0 100 100 100 76 100 60 25 0 
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The new rule that is implemented by the neural net is: “LNAME and
SSN must match 100% and DOB must match at least by 90%” for
semantic equivalence between two records to hold.  The training set,
used by the neural net, is updated in order to apply this revised rule when
identifying semantically equivalent records.  Table 1 would be updated
with a new Pattern Number row as follows:

 FNAME 0
MI 1
LNAME 1
SSN 1
DOB 0.9
ADDRESS 0.4
GENDER 0.29
SAL 1
SUPERSSN 1
D# 0.14
TARGET +1

Table 3 shows the results of training the neural net using the new
rule.  Notice that the Result data value, for Pattern Number 5, is “+0.96”,
which means that the two records are found to be duplicates.  The neural
net has been trained to uncover data matches even when the DOB data
isn’t a 100% match.  There are no changes to the source code required
to accommodate this change in user requirements.

FUTURE RESEARCH
 The results of the initial work show the use of backpropagation as

a viable means of reducing software maintenance when data quality is an
issue.   The approach needs to be applied to a large software system in
order to determine the cost savings and other intangible benefits.  There
are costs associated with training the neural net when user requirements
change, however, they appear to be minimal as a result of automated
support.   Future research is needed to evaluate the cost of training the
net versus writing source code to handle data quality issues in legacy
database systems.
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Pattern 
Number 

Testing Pattern 
 FNAME    MI     LNAME  SSN      DOB  ADDRESS   GENDER     SAL     SUPERSSN    D# 

Result 

1 +1.00 
2 + 0.99 
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4 - 1.00 
5 

0.63 0 1 1 1 0.76 1 0.6 0.25 0 
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Table 3: New Testing Set Results
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