
702 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

INTRODUCTION
This paper presents ongoing work on formulating a methodology

to deal with the non-functional aspects of software systems. It is well-
known that functional and non-functional requirements are both rel-
evant to software development. It is intended that this methodology
could be applied and integrated into the Unified Modeling Language
(UML) [Booch98]. Nowadays, UML is a standard modeling language
for software systems development [Object00].

Our proposal is to extend the UML language in order to include
the elements for conceptual modeling and for visualizing the non-
functional information in a similar manner as its counterparts, the
functional information models.

The specific objectives of this research are focused on the possibility
of developing mechanisms to incorporate non-functional elements in the
development of software systems and particularly in the extension of the
UML language for integrating non-functional aspects.

The remainder of the paper is organized as follows: section 2
defines the concepts regarding non-functional aspects covered in the
research, putting special attention on the standard that defines quality
characteristics of software.

Section 3 gives a glimpse on the possibilities for an extension of
the UML language in order to include non-functionality and presents
the methodology for dealing with non-functional requirements. Sec-
tion 4 outlines some conclusions and future research.

NON-FUNCTIONAL ASPECTS
Functional and non-functional aspects regarding the external sys-

tem behavior involve two different ways of evaluating and/or develop-
ing a given software system. On one hand, functional aspects are
directly connected to what the system does i.e. the basic functions that
a system (or a system component) must provide. On the other hand,
non-functional aspects are related with how the system behaves with
respect to some observable attributes such as performance, reliability,
efficiency, reusability, portability, maintainability, etc. (i.e. some soft-
ware qualities).

Nowadays, due to the complexity of current software systems,
non-functional requirements play a more increasingly important role
in the development process. Among the works dealing with non-func-
tionality and without a doubt, one of the most complete is [Chung00].
This approach presents a Framework that enables developers to deal
with diverse non-functional requirements of a system in a systemati-
cally way, where the requirements are used to drive design by justifying
decisions and determining their impact throughout the development
process.

Cysneiros et al. [Cysneiros01] introduce an approach also con-
cerned with non-functional requirements that complements the work
reported in [Chung00]. They present a strategy to drive elicited non-
functional requirements in use cases and scenarios.

To design a software system, we start by defining a set of func-
tional requirements and a set of nonfunctional requirements that de-
scribe what behaviors and what characteristics the implemented sys-
tem must exhibit.

An Approach to Deal with Non-Functional
Requirements within UML

Guadalupe Salazar-Zárate and Pere Botella
Department of Llenguatges i Sistemes Informàtics (LSI), Technical University of Catalunya (UPC)

Tel: 34-3-4015641, Fax: 34-3-4017014, {gsalazar, botella}@lsi.upc.es

Ajantha Dahanayake
Information Systems, Delft University of Technology, The Netherlands

Tel: 31 (15) 278-5811, Fax: 31 (15) 278-6632, a.n.w.dahanayake@its.tudelft.nl
Usually, natural language text is used in non-functional

requierements, because its flexibility and adaptability. However, draw-
backs, such as ambiguity, inconsistency, and contradictions make this
kind of information more difficult to analyze. It clearly results that
there is a need to deal comprehensively with such requirements in
order to improve the development process and to avoid errors that
lead often to greater expenses in software products.

In this project the ISO 9126 standard [ISO/IEC91] will be used, as
a starting point to identify non-functional attributes of products that
are potentially of relevance to be modeled in a software development
process. In a later phase more non-functional attributes will be in-
cluded. The standard is primarily concerned with the definition of
quality characteristics, which are expressed in terms of some high-
level features of the software, such as efficiency, reliability and others.
The standard collects quality needs with the main idea of defining a
quality model and using it as a framework for software evaluation. A
quality model is defined by means of general characteristics of soft-
ware, which are further refined into subcharacteristics in a multilevel
hierarchy. Measurable software attributes appear at the bottom of the
hierarchy.

The ISO 9126 standard defines that the characteristics of func-
tionality, reliability, usability, efficiency, maintainability and portabil-
ity are placed at the top of the hierarchy. An informative annex of
this standard provides an illustrative quality model that refines these
characteristics.

Software Quality Metrics allows the quantification of the degree
to which a software system meets non-functional requirements. Metrics,
in the ISO 9126, typically give rise to quantifiable measures mapped
on to scales. The rating levels definition determines what ranges of
values on those scales count as satisfactory or unsatisfactory. Since
quality refers to given needs, which vary from one evaluation to an-
other, then no general levels for rating are possible: they must be
defined for each specific evaluation. To determine objectively whether
or not a given software product is satisfactory, one needs to define
precisely the specific attributes (basic attributes) and not to express
them in general qualitative terms, such as reliability, maintainability,
portability, efficiency, etc.

THE PROPOSED METHODOLOGY AND
UML

UML is a general-purpose visual modeling language for specify-
ing, visualizing, constructing, and documenting the artifacts of soft-
ware systems [Booch98]. However, UML is mainly focused on func-
tional aspects of the software development. UML offers a drawing
notation with semantics to create models (diagrammatic representa-
tions of programs)[Rational99]. We would like to have the same visual
possibilities to cope with the non-functional aspects of the software
systems.

Currently we are exploring how the quality characteristicas, un-
der the ISO 9126 standard, can be transformed into something that can
be modeled by using the UML language. These visual elements that
represent the non-functional information must have their own seman-

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4283
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 703

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

tics and notation. In order to accomplish this, also the new visual
elements must be formally defined at metamodel level.

A structure is needed to identify those kinds of elements that can
be used to visualize non-functionality in UML diagrams. Therefore, a
graphical template containing those quality aspects covered by the
ISO 9126 standard must be developed.

One way of achieving this is through the use of a layout devel-
oped under �NoFun� [Botella01], which is a formal language for an
exhaustive description of the software quality characteristics contem-
plated in the ISO 9126 standard. In the layout the software quality
charateristics of a quality model are broken down into subcharacteristics,
as shown in figure 1, until some basic attributes are placed at the
bottom of the hierarchy (see [Botella01] for more details) �where
quality requirements may be defined as restrictions over the quality
model.

Figure 1: Layout of a quality model under ISO/IEC framework

Currently, a detailed study is being carried out to determine the
possible ways of representing those basic attributes in the context of
UML.

The following considerations have been done for achieving the
appropriate UML extensions in order to include the non-functional
elements.

Firstly, we propose to make use of stereotypes to represent the
non-functionality. The UML concept of stereotype is the extensibil-
ity mechanism that UML offers to extend its modeling vocabulary
that allows us to create new kinds of building blocks that can be adapted
to our specific problem. Secondly, those software quality characteris-
tics and attributes defined in the layout (see figure 1) can be identified,
and some ad hoc stereotypes can be also defined. Besides, the models
can be refined by applying different abstraction levels during ulterior
stages of the development process.

The UML concept of stereotype can be used to include non-
functionality in several ways:
� In a Class diagram. At conceptual level, one can create sterotyped

classes <<NF-Entity>> to represent a specific quality characteristic.
New strereotypes can be formulated and further refined into more
specialised ones. In a more detailed level, the Object Constraint
Language (OCL) [Warmer99] or an adaptation of the NoFun lan-
guage can be used to stablish requirements in a form of constraints.
An example of this possibility has been studied in [Salazar00].

� In UML package diagrams. One can group software elements under
a stereotyped package, for example to represent a collection of non-
functional stereotyped classes. In this way, a framework for further

design specifications is provided that includes the required non-func-
tional attributes.

� In Use Cases. The non-functionality can be seen as transformation
rules causing that new use cases may be added and/or the structure of
the use case description may be changed (or replaced), so that the non-
functional requirements are satisfied. Also new actors may be identi-
fied in the transformation process. By adding stereotypes for example
<<NF-uses>> or <<NF-extends>>, we can identify the uses cases that
involve non-functionalities. Constrains can be attached in a special
script where the specification can be written using OCL or NoFun.

Among the different proposed usages of stereotypes within the
UML diagrams, up to now Class diagrams have only been used to show
the possible extensions for non-functionality, as reported in
[Salazar00]. Figure 2 shows a stereotyped class with some basic non-
functional attributes as an example to define the Reliability degree for
a specific software component. In order to establish some constraints,
an extra compartment containing OCL expressions is added within the
stereotyped class.

Figure 2: An example of a non-functional stereotyped class

In [Cysneiros00] a strategy to deal with the non-functional re-
quirements is introduced. A detailed integration process of the non-
functional requirements into the conceptual models is described. Al-
though we do not have experience on the use of the strategy, it seems
to be complex and demands the use of specific (self-developed) tools.
With our approach we will try to reduce the complexity by using and
extending the UML notation.

It is intended to identify the non-functional elements in order to
extend the UML vocabulary, first at model level, and in a later step, at
metamodel level, to provide a more general extension to the UML
vocabulary.

CONCLUSIONS AND FUTURE WORK
Using UML stereotypes as a mechanism for incorporating non-

functional elements has been introduced. The possibility of develop-
ing other mechanisms to incorporate non-functional elements that
can be added as new elements to the UML visual language is still in
progress. Currently, we are exploring the possibility to achieve this
through the creation of a framework where basic non-functional at-
tributes can be defined, selected, and presented in terms of elements
that can be modeled within UML diagrams.

The diagrams (classes, use cases, and packages diagrams) consid-
ered in this paper model static aspects of software systems. UML
provides also mechanisms for modeling the system dynamic aspects
(state, sequence, and activity diagrams) that could possibly incorpo-
rate non-functional information. However this has not been done yet,
but a detailed study should be done in the future.

ENDNOTES
1 M.G. Salazar-Zárate is holder of a scholarship from CONACyT/

México under contract 122464.

704 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

REFERENCES
[Booch98] Booch, G., Jacobson, I. and Rumbaugh, J., (1998); The Uni-

fied Modeling Language Users Guide; (Addison-Wesley object tech-
nology series) Addison Wesley.

[Botella01] Botella, P., Burgués, X., Franch, X., Huerta, M., and Salazar,
G.; Modeling Non-Functional Requirements. Jornadas de Ingeniería
de Requisitos Aplicada. Sevilla, 11 y 12 de Junio 2001. Spain.

[Chung00] Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J.; Non-
Functional Requirements in Software Engineering; Kluwer Academic
Publishers. 2000.

[Cysneiros00] Cysneiros, L.M. and Leite, J.C.S.P. �Using UML to Re-
flect Non-Functional Requirements�. Requirements Engineering Jour-
nal Vol.6 No.2 2000 (http://rej.co.umist.ac.uk).

[Cysneiros01] Cysneiros, L.M. and Leite, J.C.S.P. �Driving Non-Func-
tional Requirements to use Cases and Scenarios� XV Simposio
Brasileiro de Engenharia de Software, oct 2001 pp:7-20. Brazil.

[ISO/IEC91] ISO/IEC 9126; Information Technology �Software Prod-
uct Evaluation�Quality Characteristics and Guidelines for Their
Use. International Organization for Standardization. Geneva. 1991.

[Object00] Object Management Group. Unified Modeling Language Speci-
fication, Version 1.3. Technical Report, Object Management Group,
2000. Available at http://www.omg.org/technology/documents/for-
mal/unified_modeling_language.htm

[Salazar00] Salazar-Zárate, G. and Botella, P.; Use of UML for non-
functionals aspects; 13th International Conference Software & Sys-
tems Engineering and their Applications. (ICSSEA �2000). Paris,
France. 2000.

[Rational99] Rational Software Corporation: UML Semantics, version
1.3. June 1999. Available at http://www.rational.com/uml/resources/
documentation/index.jsp

[Warmer99] J. B. Warmer, and A. G. Kleppe. �The Object Constraint
Language: Precise Modeling With Uml�. (Addison-Wesley Object
Technology Series) Adisson Wesley 1999.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/approach-deal-non-functional-

requirements/31883

Related Content

Pedagogical Agents in 3D Learning Environments
Theodouli Terzidouand Thrasyvoulos Tsiatsos (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 2572-2581).

www.irma-international.org/chapter/pedagogical-agents-in-3d-learning-environments/112673

Software Development Life Cycles and Methodologies: Fixing the Old and Adopting the New
Sue Conger (2011). International Journal of Information Technologies and Systems Approach (pp. 1-22).

www.irma-international.org/article/software-development-life-cycles-methodologies/51365

Representations, Institutions, and IS Design: Towards a Meth-Odos
Gianluigi Viscusi (2012). Phenomenology, Organizational Politics, and IT Design: The Social Study of

Information Systems (pp. 131-141).

www.irma-international.org/chapter/representations-institutions-design/64681

Negotiating Local Norms in Online Communication
Jonathan R. White (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1217-

1225).

www.irma-international.org/chapter/negotiating-local-norms-in-online-communication/183834

Performance Measurement of a Rule-Based Ontology Framework (ROF) for Auto-Generation of

Requirements Specification
Amarilis Putri Yanuarifiani, Fang-Fang Chuaand Gaik-Yee Chan (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-21).

www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-

generation-of-requirements-specification/289997

http://www.igi-global.com/proceeding-paper/approach-deal-non-functional-requirements/31883
http://www.igi-global.com/proceeding-paper/approach-deal-non-functional-requirements/31883
http://www.irma-international.org/chapter/pedagogical-agents-in-3d-learning-environments/112673
http://www.irma-international.org/article/software-development-life-cycles-methodologies/51365
http://www.irma-international.org/chapter/representations-institutions-design/64681
http://www.irma-international.org/chapter/negotiating-local-norms-in-online-communication/183834
http://www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-requirements-specification/289997
http://www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-requirements-specification/289997

