
Issues and Trends of IT Management in Contemporary Organizations 589

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Applying A Reusable Component Model
in Raise Formal Method

Laura Felice
INTIA, Departmento de Computacion y Sistemas, Facultad de Ciencias Exactas, Paraje Arroyo Seco, Argentina

Universidad Nacional del Centro de la Provincia de Buenos Aires, Tel: 54 2293 432530, lfelice@exa.unicen.edu.ar

Daniel Riesco
Departamento de Informatica, Facultad de Ciencias Fisico, Matematicas y Naturales

Universidad Nacional de San Luis, Argentina, driesco@unsl.edu.ar
ABSTRACT

There is a great diversity in the software engineering technologies that involve some form of software reuse. However, there is a
commonality among the techniques used. For example, software component libraries, source code compilers, and generic software
templates all involve abstracting, selecting, specializing, and integrating software artifacts.
 In order to include them in the RAISE (Rigorous Approach to Industrial Software Engineering) method, we propose to introduce a RC
(Reusable Component) model in all the development steps. The RAISE method is based on the idea that software development is a
stepwise, evolutionary process of applying semantics-preserving transitions. There is not explicit reference to the specification reusability
in this development process, so our model will allows to be an integrated mechanism to the method.
 In this paper, we provide the mechanism to select a RSL (RAISE Specification Language) reusable component in order to guide RAISE
developers in the software construction and specification. Thus, developers can efficiently locate, understand, compare and select the
appropriate artifacts from a collection.

INTRODUCTION
Software reusability is the ability to construct new artifacts of

software, using others existing in a different context from which they
were originally developed. “If instead of being developed for just one
project, a software element has the potential of serving again and
again for many projects, it becomes economically attractive to submit
it to the best possible quality techniques, such as formal specifications
of components.” [9].

It is impossible to manage a library with a large number of com-
ponents without a systematic classification scheme, which splits ob-
ject domains into sub-domains that can be identified. It is also conve-
nient to reflect this division in the components. Software reusability
takes many different requirements into account, some of which are
abstract and conceptual while others are concrete and bound to imple-
mentation properties. Reusable components must be specified in an
appropriate way. For example at more abstract levels we need descrip-
tions satisfying three conditions:
• “They should be precise and an unambiguous.
• They should be complete or at least as complete as we want, in each

case.
• They should not over-specify” [9]

At more concrete levels we need to include the specification
together with the implementation, in the software itself.

There are many works that prove that software reusability can be
addressed from formal descriptions [7]. In this work we propose the
RC model for the definition of the structure of a reusable component
that integrates specifications in RSL [4] and object-oriented code.

The results of RAISE [1] project are a “wide spectrum” specifica-
tion and design language, an associated method [5] and a commercially
available set of tools. The language allows us to specify in different
styles: applicative or imperative, sequential or concurrent. The RAISE
method is based on the idea that software development is a stepwise,
evolutionary process of applying semantics-preserving transitions.

The RC model describes object-oriented classes at different levels
of abstraction:
• Specialization: hierarchies of RSL implicit specifications related by

formal specialization relation.
• Realization: hierarchies of RSL complete algebraic specifications

related by realization relations.
• Code: hierarchies of imperative RSL schemes related by implemen-

tation relations and linked to object-oriented code.

We define a rigorous process for reusability of RC components.
The manipulation of them by means of specification building opera-
tors (Rename, Extend, Combine, Hide) is the basis for the reusability.

The paper has the following structure: in Section 2 we give the
most important related works. Section 3 gives a brief descriptions of
RAISE and the RSL language. In Section 4 we present our strategy.
Section 5 describes the RC model. Next, the Reuse Process is described
finishing with conclusions.

RELATED WORKS
Different approaches to specify the reusable components func-

tionality have been proposed. The way in which the components can
be used with others can play a critical role in the reuse implementa-
tion. As a typical related work, we can mention Hennicker and Wirsing
[6] who present a model for reusable component definition. A reusable
component is defined as an unordered tree of specifications where any
two consecutive nodes are related by the implementation relation and
the leaves are different implementations of the root. The work of
Chen y Cheng [2] is another approach that provides a formalism to
register components properties to reuse them based on the architec-
ture and integration of the system. They are related to LOTOS tools
to facilitate the retrieval of the reusable component.

On the other hand, the work of Zaremski [11] is related to the
specification matching. It is very important to emphasize this pro-
posal has been referenced by a lot of authors.

Related with the mechanism to select a component, we can men-
tion REBOUND [10], a framework whose objective is to guide in the
searching for a solution based on existing libraries of components.

 It is very interesting the work of Krueger [7], who makes an
important comparative analysis for different approaches. He uses a
taxonomy for their descriptions and comparisons in terms of reusable
artifacts and the way in which these artifacts are abstracted, selected,
specialized and integrated.

THE RSL LANGUAGE
The aim of the project RAISE, was to develop a language, tech-

niques and tools that would enable industrial use of formal methods.
The results of this project include the RSL Language which allows us to
write formal specifications. In addition to this, a method to carry out
developments based on such specifications, and a set of tools to assist

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4253
IDEA GROUP PUBLISHING

590 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

in edition, checking, transforming and reasoning about specifications
[3] are provided.

RSL is a “wide spectrum” language that can be applied at different
levels of abstraction as well as stages of development. It includes
several definition styles such us model-based or property-based,
applicative or imperative, sequential or concurrent.

A development in RAISE begins with an abstract specification
and gradually evolves to concrete implementations. The first specifi-
cation is usually an abstract applicative one, for example functional or
algebraic. A first algebraic specification should have:
• A hierarchy of modules whose root is the system module.
• A module containing types and attributes for the non-dynamic iden-

tified entities.
• The signatures of the necessary functions associated with types.

These functions should be categorized as generators (if the associ-
ated type or a type dependent on it appears in their result types) and
as observers. Besides, preconditions should be formulated for partial
functions. These preconditions are expressed by means of functions,
called guards.

The specification may contain invariants expressed as functions.

RAISE DEVELOPMENT PLAN APPLYING A
REUSE MODEL

Usually, engineers proceed from applicative to imperative speci-
fications. We propose to introduce the RC (Reusable Component)
model for the definition of the structure of a reusable component into
RAISE method. Where to introduce this model?. RAISE developers
begins with the Module scheme specification, defines an abstract
applicative module, develops a sequence of concrete applicative mod-
ules and the corresponding set of imperative modules from the final
applicative modules. Summarizing, we can picture them as in figure 1.

Figure 1: Overview of the RAISE model

The objective is that engineers can make reuse in all of develop-
ment stages. We propose to introduce a RC model in all the develop-
ment steps; in order to include abstraction, selection, specialization,
and integration software artifacts in the RAISE method.

THE RC MODEL
It describes object classes at three different conceptual levels:

specialization, realization and code. These names refer to the rela-
tions used to integrate specifications in the three levels. Figure 2
illustrates these levels

The specialization level describes a hierarchy of incomplete RSL
specifications as an acyclic graph. The nodes are related by specializa-
tion relations. In this context, it must be verified that if P(x) is a
property provable about objects x of type T, then P(y) must be veri-
fied for every object y of type S, where S is a specialization of T.

Specialization level reconciles the need for precision and complete-
ness in abstract specifications with the desire to avoid over-specification.

Every leaf in the specialization level is associated with a sub-
component at the realization level. A realization sub-component is a
tree of complete specifications in RSL:
• The root is the most abstract definition.
• The internal nodes correspond to different realizations of the root.
• Leaves correspond to sub-components at the implementation level.

If E1 and E2 are specifications E1 can be realized by E2 if E1 and
E2 have the same signature and every model of E2 is a model of E1
[6].

Adaptation of reusable components, which consumes a large por-
tion of software cost, is penalized by over-dependency of components
on the physical structure of data.

The realization level allows us to distinguish these decisions linked
with the choice of data structure. In RAISE, there are four main speci-
fication style options. They are applicative sequential, imperative
sequential, applicative concurrent and imperative concurrent [5]. As-
sociated with them, we can also distinguish between abstract and con-
crete styles. Imperative and concrete styles use variables, assignments,
loops, channels (in concurrent specifications), etc; that are related to
design decisions about data structures. Every specification at the real-
ization level is linked to sub-components at the code level.

The code level groups a set of schemes in RSL associated with
code. RAISE method provides translation processes, which start with a
final RSL specification and produce a program in some executable
language, for example C++.

It is worth considering that the three relations (Specialization,
Realization and Code) form the “RAISE implementation relation”
[5]. Any formal system that aims to provide a means of specification
and development must provide a notion of implementation. That is, if
specification E1 is related to specification E2 in the model, we need to
know if E1 and E2 are in the “RAISE implementation relation”. The
following properties must be satisfied:
• “Properties preservation: All properties that can be proved about

E1 can also be proved for E2 (but not in general vice versa).
• Substitutivity: An instance of E1 in a specification can be replaced

by an instance E2, and the resulting new specification should imple-
ment the earlier specification”

Where:
• SPi scheme is the most abstract RSL specification of the component

module,
• SPi scheme-I are the incomplete RSL specifications of modules, in

an abstract applicative style,
• SPi scheme-C are the complete RSL specifications of modules both

in abstract applicative style and concrete applicative style,
• SPi schR are the complete RSL specifications of modules according

to decisions like the use of databases, these are the concrete applicative
specifications with efficiency improvements.

The primary idea is to provide a mechanism to identify RSL
reusable components satisfying the user’s query.

Formal Definition of RC Model
In this section the sub-components of the three conceptual levels

are defined as follows:

Figure 2: Different conceptual models

Issues and Trends of IT Management in Contemporary Organizations 591

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Specification Level: the sub-components of this level are induc-
tively defined by the identify operator, whose syntaxis is:

identify (Sp, {RCS1, RCS2,...,RCSn})

 where Sp is a RSL specification and RCSi are reusable sub-compo-
nents. Also, “j: 1<=j<=n: Root (RCSj) ‘is implemented by’ Sp).

Realization Level: the sub-components of this level are induc-
tively defined by the realize operator, whose syntaxis is:

realize (S, {RCR1, RCR2,...,RCRn})

where S is a RSL specification and RCRi are reusable components
whose roots are realizations of S . This means (“j: 1<=j<=n: Sp ‘is
implementation of’ Root (RCRj)).

Each realization, can be view like a reusable component like
realize(S,{}).

The definition of reusable sub-components in this level is related
to the development of a sequence of concrete RAISE modules.

Code Level: the sub-components of this level are inductively
defined by the codify operator, whose syntaxis is:

codify (S, {C1, C2,...,Cn})

 where S is a complete specification and each Cj (1<=j<=n) is a con-
crete class in a programming language corresponding to the abstract
specification of S.

THE REUSE PROCESS
Formal specifications are used to model the problem require-

ments and the function of the library components. The specifications
are written in RSL language. Component retrieval is made efficient by
layering a faceted classification scheme above specifications. The clas-
sification scheme consists of a collection of formal definitions repre-
senting possible component features in the domain. The formalization
of the scheme permits automated classification of the specifications.
The retrieval mechanism is based on syntactic comparison of features
sets. The components returned by the retrieval mechanism are passed
on to a more detailed evaluation that uses specification matching to
determine reusability.

The results of specification matching determine the relationship
that exists between each of the retrieved components and the require-
ments specification. The adaptation phase serves [3] to determine
whether a mechanism exists to adapt or combine the retrieved compo-
nents to solve the problem.

There is evidence that specification matching to determine com-
ponent reusability can be carried out using automated theorem proving
[11]. Attempting specification matching over a large library of com-
ponents is not a practical retrieval mechanism. The idea is to work by
classifying components in a way that components likely to match for
reusability will be assigned similar features. By formally defining the
classification features and the feature assignment process, classifica-
tion could be automated.

The main idea is to transform the incomplete RSL specification
into complete imperative specification by reusing existing compo-
nents. The method has the following steps: decomposition, identifica-
tion, adaptation and composition depicted in figure 3.

In Decomposition step the decomposition of a goal specification
Eg into sub-specifications E1, E2, En is formalized.

In Identification step for each specification Ei a component Ci
(in the specialization level) and a sequence s1,s2,...,sn of RSL specifica-
tions must be identified, verifying the implementation relation. A leaf
in Ci must be selected as a candidate to be transformed. The identifica-
tion of a component is correct if it can be modified by rename, hide
and extend operators to match the query Ei.

In Adaptation step, not only a leaf in the sub-component associ-
ated in the realization level but also a sequence of operators used in the

Figure 3: The method

a: Incomplete RSL Specifiication
b: Composition Constructors
c: Set of Incomplete RSL components Ci
d: Reuse S-Operators
e: Specialization level
f: User
g: Realization level
h: Code level
i: Reuse I-Operators
j: Reuse R-Operators
k: Set of identified components Ci
l: Set of implemented components Ci
m: Complete Imperative RSL Specifications

previous steps are applied. Then, a scheme in the code level is selected
and the same operators in the selected leaf are applied. Finally, in
Composition step, the sub-specifications Ei and their implementa-
tions are composed.

In the next section, we only describe the Identification step
because of space reasons.

RC Identification
In this section the use of specification matching to identify RC

components is described. In the identification process, we search for
all RC-components that satisfy a given query.

It must be able to find the component faster than user could build
it, so, to address this problem it is necessary a classification scheme
and then provide manual or automated retrieval techniques. We pro-
pose a classification based on:
• functionality: describing the function of the component.
• operations performed
• component structure: modules involved (schemes and objects).
• relationships to another component (‘implements’ relations and

composition of components)
• component specification style (applicative sequential, imperative

sequential, imperative sequential, applicative concurrent or impera-
tive concurrent and abstract and concrete styles).

Figure 4 shows briefly the classification of a reusable component
whose complete definition can be found in [8]. Milk Production Sys-
tem is a component belonging to the Agricultural System Infrastruc-
ture.

Localized the possible components, the objective is to compare a
component with the query. This process has two essential steps: signa-

• functionality: describe Milk Production System
• operations: records the events where animals participate. E.g.:

births, milking, feedings,etc.
• component structure:
• schemes: {Dairy_Farm Cow_Gropus, Fields, Bulls, D_Farmers,

Cow_Group, Cows, Field, Bull, D_Farmer ,Cow, Plots, Plot,
History,Constants, Event_Info, Gropu_Event, Cow_Event,
General_Types, Date}

• objects: {GH, GE, CH, CE, K, GT, D}
• relationship: -
• specification style: concrete applicative sequential

Figure 4: Milk production system component classification

592 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ture matching and semantic matching. The signature matching enables
a syntactic comparison of a query specification with specifications
existing in RC reusable components. The semantic matching com-
pares the specifications dynamic behavior. The bases of the signature
matching come from [11], even though they were adapted to the
identification of RC components.

The signature of a specification consists of a set of sorts and a set
of operations, each operation being equipped with a particular func-
tionality.

 Let L=<SL, FL > be the signature of a library specification and
Q=<SQ,FQ> the signature of a query specification where SL and SQ are
set of sorts and FL and FQ are set of operation symbols, the signature
matching is defined as follows:

Signature–Matching:

Query-Signature X RC-Library X Match-Predicate ®Set-of RC-Com-
ponents

Signature-Matching(Q,C,P) = { c ∈ C/ P(Q,C)}

This means that given a query specification Q, a RC library C and
a predicate P, it gives back the RC components that satisfy P. The
signature matching is based on operations matching. Different kinds
of operation matching can be applied. They are the exact, generalized
and specialized matchings of operations. They can be extended for
signatures of RSL specifications. This matching requires a specifica-
tions signature matching (sorts and operations) and the axioms proofs
between pairs of operations.

CONCLUSIONS
In this paper a strategy to classify and select a reusable compo-

nent is presented. We define the RC model for the description of
reusable components and a transformational process with reuse from
RSL specifications to code. Our goal is to solve a problem which is a
weakness of RAISE formal method. Therefore, the proposal is not
only to apply the software components reuse but also a domain speci-
fications reuse, i.e. in the confines of the domain engineering.

In addition to this, we would like to mention that exists the
possibility to automatically translate the specifications at code level
in C++ language, using the code generator component of the RAISE
toolset.

Many works proved that software reusability could be addressed
from formal descriptions. Taking into account the four dimensions
mentioned by Krueger [7], and comparing it with our proposal, we can
say:

Decomposition and Identification steps correspond to Ab-
straction and Selection dimensions, because Abstraction is the
essential feature in any reuse technique and Decomposition is
related to obtain sub-specifications of a modular style of speci-
fication. On the other hand, Selection is related to locate,
compare and select the reusable component and the Identifi-
cation step is related to the component identification, its
selection and the matching application.
Adaptation and Composition steps correspond to Specializa-
tion and Integration dimensions. Rigorously speaking, we can
consider the Identification step into Specialization dimension
too, because here we apply the operators to adapt the reusable
component with rename, hide and extend operators. When
we speak about Integration, we think of the combination of a
collection of selected and specialized artifacts, in Composi-
tion step, the sub-specifications and their implementation are
composed.

REFERENCES
[1] Bjorner, D. (2000) “Software Engineering: A New Approach”; Lec-

ture Notes, Technical University of Denmark.
[2] Chen Yonghao and Betty H. C. Cheng (1997) “Formally Specifying

and Analyzing Architectural and Functional Properties of Compo-
nents for Reuse”. Proc. of 8th Annual Worshop on Software Reuse
(WISR8).

[3] Felice L., Leonardi C., Favre L., Mauco V(2001). “Enhancing a
rigorous reuse process with natural language requirement specifica-
tions”. Proceedings of ‘2001 Information Resources Management
Association International Conference’. Toronto. Canadá.

[4] George, C., Haff, P., Havelund, K., Haxthausen, A., Milne, R.,
Nielsen, C., Prehn, S., Ritter, K. (1992) “The RAISE Specification
Language”, Prentice Hall.

[5] George, C., Haxthausen, A., Hughes, S., Milne, R., Prehn, S., Pedersen,
J. (1995) “The RAISE Development Method”, Prentice Hall.

[6] Hennicker, R., Wirsing, M. (1992) “A Formal Method for the
Systematic Reuse of Specifications Components”, Lecture Notes in
Computer Science 544, Springer-Verlag.

[7] Krueger, C. (1992) “Software Reuse”, ACM Computing Surveys, Vol
24, N° 2, June.

[8] Mauco, Virginia, George, C.(2000) “Using Requirements Engineer-
ing to Derive a Formal Specification”. Technical Report 223, UNU/
IIST, Macau www.iist.unu.edu.

[9] Meyer B (1997) “Object-Oriented Software Construction”, 2nd
Edition, P.Hall.

[10] Penix, J. (1999) “REBOUND: A Framework for Automated
Componet Adaptation”, WIR’99, Position Paper.

[11] Zaremski, A., J. Wing, J. (1997) “Specification Matching of Soft-
ware Components”. ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol 6, No 4, 333-369.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/applying-reusable-component-model-

raise/31853

Related Content

The Need, Requirements, and Vision for E-Societal Management
Nicolae Costake (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2792-

2804).

www.irma-international.org/chapter/the-need-requirements-and-vision-for-e-societal-management/112698

3D Media Architecture Communication with SketchUp to Support Design for Learning
Michael Vallance (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2410-

2423).

www.irma-international.org/chapter/3d-media-architecture-communication-with-sketchup-to-support-design-for-

learning/112657

Aspect-Oriented Programming
Vladimir O. Safonov (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7037-

7045).

www.irma-international.org/chapter/aspect-oriented-programming/112402

Actor-Network Theory Perspective of Robotic Process Automation Implementation in the

Banking Sector
Tiko Iyamuand Nontobeko Mlambo (2022). International Journal of Information Technologies and Systems

Approach (pp. 1-17).

www.irma-international.org/article/actor-network-theory-perspective-of-robotic-process-automation-implementation-in-

the-banking-sector/304811

Applied Multi-Case Research in a Mixed-Method Research Project: Customer Configuration

Updating Improvement
Slinger Jansen (2009). Information Systems Research Methods, Epistemology, and Applications (pp. 120-

139).

www.irma-international.org/chapter/applied-multi-case-research-mixed/23472

http://www.igi-global.com/proceeding-paper/applying-reusable-component-model-raise/31853
http://www.igi-global.com/proceeding-paper/applying-reusable-component-model-raise/31853
http://www.irma-international.org/chapter/the-need-requirements-and-vision-for-e-societal-management/112698
http://www.irma-international.org/chapter/3d-media-architecture-communication-with-sketchup-to-support-design-for-learning/112657
http://www.irma-international.org/chapter/3d-media-architecture-communication-with-sketchup-to-support-design-for-learning/112657
http://www.irma-international.org/chapter/aspect-oriented-programming/112402
http://www.irma-international.org/article/actor-network-theory-perspective-of-robotic-process-automation-implementation-in-the-banking-sector/304811
http://www.irma-international.org/article/actor-network-theory-perspective-of-robotic-process-automation-implementation-in-the-banking-sector/304811
http://www.irma-international.org/chapter/applied-multi-case-research-mixed/23472

