
584 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
In a previous research work we have proposed a rigorous process to forward engineering UML static models. This approach is based on
the integration of semi-formal notations in UML, algebraic specifications and object-oriented code. The GSBLOO language was defined
to cope with concepts of UML models. The emphasis is given to the last steps in the road from UML to code: we describe how to transform
GSBLOO specifications into object-oriented code. Eiffel was the language chosen to demonstrate the feasibility of our approach. In
particular, we analyze the transformation of different kinds of associations and the generation of Eiffel assertions.

Forward Engineering and UML:
From UML Static Models to Eiffel Code

Liliana Favre*, Liliana Martinez and Claudia Pereira
INTIA, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

* CIC (Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, {lfavre, lmartine, cpereira}@exa.unicen.edu.ar

INTRODUCTION
Unified Modeling Language (UML) has emerged as a standard

modeling language in the object-oriented analysis and design world. It
is a set of graphical and textual notations for specifying, visualizing
and documenting object-oriented systems (OMG, 1999; Booch 1999).

There are CASE tools which offer code automatic generation and
reverse engineering from object-oriented models. They present prob-
lems due to the lack of formal semantics of UML models and these
models are semantically richer than the object-oriented languages,
though.

These problems have motivated the analysis of different ap-
proaches to give semantics to the UML notations. The UML formal-
ization is an open problem still and many research groups have already
achieved the formalization of parts of the language. The Precise UML
Group, pUML, is created in 1997 with the goal of giving precision to
UML (Evans et al. 1998). Different results give semantics to UML
subsets based on different formalisms (Lano 1995; Breu et al.1997;
Bruel and France, 1998; Gogolla and Ritchers, 1997; Kim and
Carrington, 1999; Overgaard, 1998; Barbier et. al., 2001). Currently,
there are few methods that include OCL, Catalysis is the most impor-
tant reference (D’Souza and Wills, 1999). Other research works pro-
pose the integration of UML with OCL (Ritchers and Gogolla, 2000).
Siau and Halpin (2001) and JDM (2000) identify some problematic
aspects of UML and propose possible solutions.

A variety of advantages have been attributed to the use of formal
software specifications to solve these problems. A formal specifica-
tion can reveal gaps, ambiguities and inconsistencies. However, formal
specifications alone do not address the need of industrial practitioners,
who require an understandable and scalable semantics that can be inte-
grated by using tools.

Favre and Clérici (2001) propose a rigorous process to forward
engineering UML static models using the algebraic language GSBLOO.
The contribution was towards an embedding of the code generation
within a rigorous process that facilitates reuse. The GSBLOO language
was designed to cope with concepts of the UML models. This language
is relation-centric, it expresses different kinds of relations as primi-
tives to develop specifications. The transformation of UML static
models specified in OCL into GSBLOO and a system of transformation
rules were described. The formal model SpReIm for defining struc-
tured collections of reusable components that integrates algebraic speci-
fications and object-oriented code was defined. The manipulation of
SpReIm components by means of building operators is the basis for
reusability.

The emphasis is given to the last steps in the road from UML to
code. Eiffel was chosen to prove the feasibility of our approach. It is
based on the “Design by Contract” principle. Contracts imply obliga-
tions and benefits for clients and contractors, and are made explicit by
the use of Eiffel assertions. These features facilitate to integrate axi-
oms of specifications with object oriented code. We describe how to

transform GSBLOO specification into Eiffel, analyzing the transforma-
tion of different kinds of relations and the generation of Eiffel asser-
tions.

This paper has the following structure: -Section 2 describes the
basis of a rigorous forward engineering method, -Section 3 outlines
GSBLOO language features, -Section 4 analyzes how to transform GSBLOO

specifications into Eiffel code, -Section 5 considers conclusions.

MOTIVATION
There are CASE tools for code generation starting from UML

models. Unfortunately, the current techniques available in these tools
are not enough for the complete automated generation of source code.
As an example, Rational RoseTM will be analyzed (Quatrani, 1998).
This allows generating databases definitions, class interfaces and rela-
tions in which the class participates. The current modeling languages
available in Rational RoseTM (Booch, OMT, UML) do not have a pre-
cisely defined semantics. This hinders the code generation processes.
Another source of problems in these processes is that, on one hand,
the UML models contain information that can not be explicited in
object-oriented languages and on the other, the object-oriented lan-
guages express implementation characteristics that have no counter-
part in the UML models. For instance, languages like C++, Java and
Eiffel do not allow explicit associations, their cardinality and their
constraints. It is the responsibility of the designer to make good use of
this information, selecting from a limited repertoire of implementa-
tions or implementing the association by himself. The forward and
reverse processes in Rational RoseTM are facilitated by means of the
insertion of annotations in the generated code. These annotations are
the link between the model elements and the language, they should be
kept intact and not changed. It is the programmer’s responsibility to
know what he can modify and what he can not.

The programmer, to solve implementation problems, can modify
the code by adding or removing classes, modifying class attributes or
operations, changing operation signatures, etc. These code modifica-
tions require the programmer’s ability to keep the integration between
model and language.

Moreover, the existing tools do not exploit all the information
contained in the UML models, for instance, cardinality and constraints
of associations, preconditions, postconditions and class invariants in
OCL are only translated as annotations. Assertions in OCL could be
translated to assertions in an object-oriented language that supports
them, like Eiffel. Furthermore, reuse is based on object-oriented lan-
guage libraries and not on specifications that describe relations be-
tween classes and their operations free from implementation details.

To overcome these problems, a rigorous process to forward engi-
neering UML static models using the algebraic language GSBLOO was
proposed (Favre and Clérici, 2001).

Starting from UML class diagrams, an incomplete algebraic speci-
fication can be automatically built by instantiating reusable schemes.

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4252
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 585

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

This specification contains the highest information obtained by trans-
lating the UML constructions and OCL constraints to GSBLOO.

Preconditions, postconditions and invariants in OCL will be trans-
lated to GSBLOO. The process of transformation is supported by a
transformation rules system (Favre et. al, 2000).

Transformations are based on a reusable component library de-
fined by the SpReIm model. (Favre and Clérici, 2001). This model
allows defining structured collections of reusable components that
integrate algebraic specifications and object-oriented code. It takes
advantage of the algebraic formalism power to describe behavior in an
abstract way integrating them with concrete implementations. It con-
sists of three abstraction levels:
• Specialization: it describes a hierarchy of incomplete specifications

related by specialization relationships through two views: one based
on OCL specifications and the other on GSBLOO.

• Realization: it describes a hierarchy of complete specifications re-
lated by realization relationships.

• Implementation: it relates hierarchy of concrete classes schemes in
an object-oriented language.

The reuse of components is based on the application of opera-
tors. Reuse operators were defined on the three levels of the SpReIm
model.

Thus, an algebraic specification can be semi-automatically built.
It can be used to detect inconsistencies in the class diagrams. The
GSBLOO specifications must be integrated with object-oriented code.
The emphasis in this paper is given to the transformation of GSBLOO

to Eiffel.

FORMALIZING UML STATIC MODELS IN
THE GSBLOO LANGUAGE

The existing algebraic specification languages do not possess spe-
cific constructions to express all kinds of relations in UML (depen-
dency, association, generalization and realization). These are gener-
ally buried in client and inheritance relations. However, associations
are semantics constructions of equal weight to the classes and generali-
zations in the UML models, and should not be treated just as imple-
mentation constructions. In fact, the associations allow abstracting
the interaction between classes in the design on large systems and they
affect the partition of the systems in modules. Since an integrated
method requires common structuring mechanisms for object-oriented
models and algebraic specifications, the GSBLOO language has been
defined. It enriches GSBL (Clérici, 1988). The ability to specify de-
ferred and effective parts, inheritance relations among classes and
mechanisms such as implicit parameterization to support reuse of
specifications and their incremental development are among the most
important features of GSBL.

GSBLOO extends GSBL with constructions that allow expressing
different kinds of UML relations. OBJECT CLASS and ASSOCIA-
TION class specify classes and associations (ordinary, qualified, asso-
ciation-class) respectively.

An OBJECT CLASS distinguishes incomplete and complete parts.
The DEFERRED clause declares new sorts, operations or equations
incompletely defined. The EFFECTIVE clause either declares new
sorts, operations or equations completely defined, or completes the
definition of some inherited sort or operation. Sorts and operations
are declared in the SORTS and OPS clauses. In GSBLOO, it is possible to
specify partial functions restricting operations by preconditions.

GSBLOO expresses dependencies in the context of classes by means
of the USES clause. The mechanisms for defining inheritance are the
RESTRICT and REFINES clauses. The REFINES clause relies on the
module viewpoint of classes and the RESTRICTS clause on the type
viewpoint of a class. Both of them reflect IS-A relations between
abstractions in the external model of any software system. Associa-
tions are defined as standard elements in GSBLOO.

Generic relations can be used in the definition of concrete rela-
tions by instantiation. New associations and whole-part relations (ag-

gregation and composition) can be defined by means of the following
syntax:

 ASSOCIATION <relationName>
IS <constructorTypeName>[...:Class1;..:Class2; ...:Role1;...:Role2; ...: mult1;...:mult2;
 ..:visibility1;...:visibility2]
CONSTRAINED BY <constraintList>
END

WHOLE-PART <relationName>
IS <constructorTypeName> [...: Whole;...: Part; ;...:Role1;...:Role2;...: mult1;...:mult2;
 ...:visibility1;...:visibility2]
CONSTRAINED BY <constraintList>
END

The IS clause expresses the instantiation of
<constructorTypeName> with classes, roles, visibility and multiplicity.
The CONSTRAINED-BY clause allows the specification of static con-
straints in first order logic. Relations are defined in an Object Class by
means of the following syntax:

 OBJECT CLASS C...
 "<relationName>"ASSOCIATES <className>
 "<relationName>" HAS-A SHARED <className>
 "<relationName>" HAS-A NON-SHARED <className>

 ...
END-CLASS

The keywords ASSOCIATES and HAS-A identify ordinary asso-
ciation or aggregation respectively. The keywords SHARED and NON-
SHARED refer to simple aggregation and composition respectively.
An association may be refined to have its own set of operations and
properties. Such an association is called an Association Class.

The PACKAGE is the mechanism provided by GSBLOO for group-
ing classes, and controls its visibility. It matches the UML semantics.
Classes and their relations from a system design into a series of pack-
ages might be separated using the GSBLOO import dependencies to
control access among these packages.

Figure 1 shows an information system for a company. There is an
association between Person and Company, specifying that managers
(instances of Person) manage companies. Every manager may man-
age only one department and every company may have only one
manager. There is a qualified association between Person and Bank. In
the context of Bank, an accountNumber (qualifier) identifies a par-
ticular customer. In an employer/employee relation between Company
and Person, there is a Job that represents the properties of that rela-
tion, which applies to exactly one pairing of Person and Company.
Figure 2 partially shows the GSBLOO specification of Figure 1.

Figure 1: Company information system. A UML class diagram.

586 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 2: Information system company. A GSBLoo specification

TRANSFORMING GSBLOO

SPECIFICATIONS IN EIFFEL CODE
The resulting specifications of transforming UML static models

in GSBLOO must be integrated with an object-oriented code. These
transformations are described below and they are exemplified for the
classes and relationships expressed in the UML diagram in Figure 1.

Transformation of Classes
The algebraic specification obtained in the previous step must be

transformed into Eiffel code. To achieve this, every clause and rela-
tion present in a GSBLOO OBJECT CLASS specification was analyzed.

GSBLOO and Eiffel have the same syntax for the declaration of

class parameters. Then, this transformation is
reduced to a trivial translation.

The relation introduced in GSBLOO using the
clause USES will be translated into a client rela-
tion in Eiffel. The relation expressed through
the keywords REFINES and RESTRICTS in
GSBLOO will become an inheritance relation in
Eiffel. This provides mechanisms to carry out
modifications on the inherited classes that will
allow adapting them.

The DEFERRED and EFFECTIVE clauses
in GSBLOO declare sorts and operations of the
class with the equations that define their behav-
ior. If an OBJECT CLASS is incomplete, i.e., it
contains sorts and operations in the clause DE-
FERRED, the keyword class in Eiffel is preceded
by the keyword deferred. Sorts do not require
explicit translation.

From the signature of the operations, the
interfaces for the methods of the Eiffel class are
generated (feature in Eiffel). The translation of
each operation has a different treatment accord-
ing to the type of feature to which it makes
reference (functions, procedures, variables or
constants). It should also be considered that of
all the domains of an operation, the first one
that coincides with the sort of the specified class
is the object Current in the object-oriented lan-
guage and it should be eliminated from the list of
parameters of the resulting feature.

Functions and procedures can present argu-
ments. Once each name is obtained, either by an
explicit requirement to the user or by extracting
it from the specification, the list of arguments
of each feature is built. Functions and procedures
require a body defined by the keywords do end,
which will be completed by the user.

Transformation of Axioms
Eiffel provides an assertion language. As-

sertions are boolean expressions expressing se-
mantics properties of the classes. They “serve
to express the specification of software compo-
nents: indications of what a component does
rather than how it does it” (Meyer 97). They
can play the following roles:
• Precondition: expresses the requirements the

client must satisfy to call a routine.
• Postcondition: expresses the conditions the

routine guarantees on return.
• Class invariant: expresses the requirements

every object of the class must satisfy after its
creation.

Preconditions and axioms of a function
written in GSBLOO are used to generate precondi-

tions and postconditions for routines and invariants for Eiffel classes.
It is worth clarifying for the assertion generation that a basic

functionality f: s x a1 x a2 xan, where s is the sort of interest, is
translated into Eiffel syntax as f(a1,a2,....an).

A GSBLOO precondition, which is a well-formed term defined over
functions and constants of the global environment classes, is auto-
matically translated to Eiffel method precondition.

Axioms in a formal specification language represent the con-
straints the class introduces on the operations. Axioms are translated
to Eiffel postconditions and invariants.

The system can automatically derive an invariant if it can estab-
lish a correspondence between the functions in the axiom and the class
features that only depend on the object state.

Issues and Trends of IT Management in Contemporary Organizations 587

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

A postcondition can automatically be generated from one axiom
if a term e(<list-of-arguments>), associated to an operation, can be
distinguished within itself in such a way that any other term of the
axiom depends upon the <list-of-arguments> or constants. Then, the
postcondition will associate itself with the method that reflects the
term and will obviously depend only upon the previous state of the
method execution, upon the state after its execution and upon the
method arguments.

Another type of situation cannot be automatically derived. These
cases do not enable the system to build an assertion without the user’s
interventions. The programmer can also incorporate assertions that
reflect purely implementation aspects. A detailed description and ex-
amples may be found in Favre (1998).

Transformation of Associations
Associations are transformed by instantiating reusable schemes

that express how to implement them. These schemes are linked to the
different relation constructor types in GSBLOO.

The transformation of associations is automatically derived start-
ing from existent schemes in the level of implementation of the
Association component.

The specialization level describes the different relations through
incomplete specifications classified according to its kind, degree and
connectivity. The realization level describes a hierarchy of specifica-
tions associated to different realizations. For instance, for an associa-
tion (binary, bi-directional and many-to-many) different realizations
through hashing, sequences or trees could be associated. The imple-
mentation level associates each leaf of the realization level to differ-
ent implementations in an object-oriented language.

Implementation sub-components express how to implement as-
sociations and aggregations. For example, a bi-directional binary asso-
ciation with multiplicity “one-to-one” will be implemented as an
attribute in each associated class containing a reference to the related
object. On the other hand, if the association is “many-to-many” the
best approach is to implement the association as a different class, in
which each instance represents one link and its attributes.

For each HAS-A clause, an implementation scheme will be se-
lected and the “aggregate” and the “part” will be instantiated. For
example, if the aggregation is “one-to-many”, for an attribute in the
“aggregate”, a reference to a sequence of pointers to the “part” will be
generated.

Analogously, for every ASSOCIATES clause, a scheme in the
implementation level of the Association component will be selected
and instantiated. In these cases, the implementation level schemes
suggest including “reference” attributes in the classes or introducing an
intermediate class or container. Notice that the transformation of an
association does not necessarily imply the existence of an associated
class in the generated code, as an efficient implementation can suggest
including “reference” attributes in the involved classes.

Figure 3 partially shows the Eiffel resulting code of transforming
the GSBLOO specifications of the company system.

CONCLUSIONS
In this research work the basis of a rigorous process for the

systematic code generation starting from UML model were described.
One of the stages of this process: -the Eiffel code generation starting
from algebraic specifications was analyzed in detail. In particular, the
automatic transformation of different types of associations was de-
scribed. All the UML model information (classes, associations, cardi-
nality, OCL constrains, etc) is overturned in specifications having
implementation implications. If a class diagram is specified starting

For instance, the axiom:
 NumberofEmployee (HireEmployee(c,p))= NumberofEmployee(c)+1
 it is translated to NumberOfEmployee= old NumberOfEmployee+1

Figure 3: Information system company. Eiffel code

from SpReIm component, the implementations will also be built reus-
ing SpReIm subcomponents of the implementation level. The transi-
tions among the UML diagrams and all the intermediate versions are
carried out by applying transformations that preserve the integrity
between specifications and code.

Some key steps of this method were prototyped: the transforma-
tion of algebraic specifications to Eiffel code and the transformation
of OCL to GSBLOO. Nowadays the prototype of the method of forward
engineering proposed is being implemented and its integration with
the processes supported by the existent CASE tools is being analyzed.

REFERENCES
Barbier, F.;Henderson-Sellers, B.;Opdahl, A.; Gogolla, M. (2001) The

Whole Part Relationship in the Unified Modeling Language:A New
Approach. In: (K.Siau and T. Halpin), Chapter 12. Unified Modeling
Language: System Analysis, Design and Development Issues, Idea
Group Publishing. USA.

Booch, G.; Rumbaugh, J.; Jacobson, I.(1999) The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

Breu, R.; Hinkel, U.; Hofmann, C.; Klein, C.; Paech, B.; Rumpe,B.;
Thurner, V.(1997) Towards a Formalization of the Unified Model-
ing Language. TUM-I9726 Technische Universitat Munchen.

588 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Bruel, J.; France, R. (1998) Transforming UML Models to Formal Speci-
fications. In : Proc. of UML’98-Beyond the notation, Lecture
Notes in Computer Science 1618, Springer Verlag, 78-92.

Clérici, S.; Orejas, F.(1988) GSBL: An Algebraic Specification Lan-
guage Based on Inheritance. In: Proc. of the European Conference
on Object-oriented Programming ECOOP 88, 78-92.

D’Souza,D.; Wills, A.(1999) Objects, Components, and Frameworks
with UML. Addison Wesley.

Evans, A.; France, R.; Lano, K.; Rumpe, B. (1998) The UML as a
Formal Modeling Notation. In: Proc. of UML’98-Beyond the Nota-
tion, Lecture Notes in Computer Science 1618. Springer.

Favre, L.: Object-oriented Reuse through Algebraic Specifications In:
Proc. of Technology of Object-Oriented Languages and Systems,
TOOLS 28, IEEE Computer Society, 1998; S 101-112.

Favre, L.; Martinez, L.; Pereira, C. (2000) Transforming UML Static
Models to Object Oriented Code. Technology of Object-Oriented
Languages and Systems, TOOLS 37, IEEE Computer Society. ISBN
0-765-0918-5 (170-181).

Favre, L; Clérici, S.(2001) A Systematic Approach to Transform UML
static Models to Code. In: (K.Siau and T. Halpin), Chapter II. Unified
Modeling Language: System Analysis, Design and Development Is-
sues, Idea Group Publishing, USA.

Gogolla, M.; Ritchers, M.(1997) On combining Semi-formal and Formal
Object Specification Techniques. In: Proc. WADT97, Lecture Notes
in Computer Science 1376, Springer, 238-252.

JDM (2000) Journal of Database Management, 11(4) Idea-Group Pub-
lishing

Kim, S.; Carrington, D.(1999) Formalizing the UML Class Diagram
using Object-Z. In: Proc. UML 99, Lecture Notes in Computer Sci-
ence 1723, 83-98.

Lano, K (1995) Formal Object-Oriented Development. Springer-Verlag.
Meyer, B (1997) Object-oriented Software Construction. Prentice Hall.
OMG (1999) Unified Modeling Language Specification, v. 1.3. docu-

ment ad/99-06-08, Object Management Group.
Overgaard, G.(1998) A Formal Approach to Relationships in the Uni-

fied Modeling Language. In: Proc. of Workshop on Precise Semantic
of Modeling Notations, International Conference on Software Engi-
neering. ICSE’98, Japan.

Quatrani, T. (1998) Visual Modeling with Rational Rose and UML.
Addison Wesley.

Richters, M.; Gogolla, M.(2000) Validating UML Models and OCL Con-
straints. In: (Evans, A. ;Kent,S.) Proc. of <<UML>> 2000. The
Unified Modeling Language, Lecture Notes in Computer Science
1939. Springer, 265-277.

Siau, K.; Halpin, T. (2001) Unified Modeling Language: System Analy-
sis, design and Development Issues. K. Siau; T. Halpin (eds) Idea-
Group Publishing.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/forward-engineering-uml/31852

Related Content

Human Supervision of Automated Systems and the Implications of Double Loop Learning
A.S. White (2013). International Journal of Information Technologies and Systems Approach (pp. 13-21).

www.irma-international.org/article/human-supervision-of-automated-systems-and-the-implications-of-double-loop-

learning/78904

Incremental Approach to Classification Learning
Xenia Alexandre Naidenova (2018). Encyclopedia of Information Science and Technology, Fourth Edition

(pp. 191-201).

www.irma-international.org/chapter/incremental-approach-to-classification-learning/183733

Social Network Analysis and the Study of University Industry Relations
Fernando Cabrita Romero (2018). Encyclopedia of Information Science and Technology, Fourth Edition

(pp. 7150-7160).

www.irma-international.org/chapter/social-network-analysis-and-the-study-of-university-industry-relations/184411

Illness Narrative Complexity in Right and Left-Hemisphere Lesions
Umberto Giani, Carmine Garzillo, Brankica Pavicand Maria Piscitelli (2016). International Journal of Rough

Sets and Data Analysis (pp. 36-54).

www.irma-international.org/article/illness-narrative-complexity-in-right-and-left-hemisphere-lesions/144705

Realizing the Potential of e-Books in Early Education
Kathleen A. Pacigaand Jessica L. Hoffman (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 4787-4795).

www.irma-international.org/chapter/realizing-the-potential-of-e-books-in-early-education/112923

http://www.igi-global.com/proceeding-paper/forward-engineering-uml/31852
http://www.irma-international.org/article/human-supervision-of-automated-systems-and-the-implications-of-double-loop-learning/78904
http://www.irma-international.org/article/human-supervision-of-automated-systems-and-the-implications-of-double-loop-learning/78904
http://www.irma-international.org/chapter/incremental-approach-to-classification-learning/183733
http://www.irma-international.org/chapter/social-network-analysis-and-the-study-of-university-industry-relations/184411
http://www.irma-international.org/article/illness-narrative-complexity-in-right-and-left-hemisphere-lesions/144705
http://www.irma-international.org/chapter/realizing-the-potential-of-e-books-in-early-education/112923

