IDEA GROUPPUBLISHING

l—y

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4231

The Case For A Less Methodical Methodology:
Lean, Light, Extreme, Adaptive, Agile and
Appropriate Software Development

John Mendonca
Purdue University, Indiana, Tel: (765) 496-6015, Fax: (765) 496-1212, jamendonca@tech.purdue.edu

ABSTRACT

Historically, the approach to software engineering has been based on a search for an optimal methodology—that is, the identification
and application of a set of processes, methods and tools that can predictably lead to software development success. Less methodical
methodologies, under a variety of names, takes a contingency oriented approach. Because of the limitations in the nature of methodol-
ogy, the high failure rate in software development, the need to develop methodology within an environmental context, and the pressures
of fast-paced “E” development, further exploration and definition of a more flexible, contingency-based approach to methodology is

Justified.

INTRODUCTION

Despite the high rate of failure in software development, the
fundamental strategy for achieving quality in software engineering
continues to be methodology—that is, discovery and application:of
that ideal set of processes and practices that lead to software products
that are accurate, effective and are delivered on time and within bud-
get. The path to an optimal methodology leads theorists and practi-
tioners toward increasingly refined sets of concepts, models, rules,
project management strategies, descriptions of deliverables, tools, test-
ing standards, test case constructs, and the many other components of
a well-defined methodology. Perhaps because of its close identity with
the “engineering” paradigm, ubiquitous failure seems not to have shaken
faith in-the methodical approach to software development. In fact,
the response to failure seems often to be more methodology.

In recent years, due to the increasing complexity of the information
technology (IT) arena and the furious pace of E-commerce and E-business
development, a less methodical approach to software development man-
agement has gained attention. This approach has often been linked with
Extreme Programming (XP) and has been called by a variety of names,
including “lean” and “light” methodology (Yourdon, 2000 [1]). Highsmith
(2000) used the term “adaptive” in his book describing the basic concepts,
but he and others prominent in XP theory and practice seem to have
settled on “agile” as the preferred term. Ealier this year, with the support
of XP proponents and others, the “Manifesto for Agile Software Devel-
opment” (2001) was developed and published.

Regardless of the name, the approach embodies two characteris-
tics. The first characteristic is that it is less methodical. It is not
fixated on the search for an optimal methodology, but rather is con-
tingency oriented, allowing for adaptation and flexibility depending
on environmental issues. The second characteristic is that it incorpo-
rates a concept of appropriateness. A methodology must not only
adapt to its environment, it must also reflect an appropriate level of
regidity, the “just right” level between no methodology and a heavily
restrictive one that suffocates rather than informs.

This paper argues that because of the inherent limits to method-
ology, unrealized expectations, and the fast-paced, complex and un-
predictable environment, a less methodical; contingency approach to
software engineering is justified.

METHODOLOGY: EXPECTATIONS AND
LIMITATIONS

As noted above, a software development methodology is a set of
processes and techniques for the management of software develop-
ment. The numerous formal documented methodologies and many
more informal ones vary based on the many paradigms and variables

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations,
Information Resources Management Association International Conference.

that are part of the software development landscape. Ivaria (2000)
suggests there are over 1000 information systems development meth-
odologies and offers a schema for their characterization and evalua-
tion. All methodologies have the common characteristics of being a
defined set of activities and are based on the concepts of quality and
engineering in software development. In addition, there are two very
significant aspects of the nature of methodology itself: first, it is
defined, developed and verified only through experience, after devel-
opment has occurred; and second, methodology is itself a system.

Pressman (2000) suggests that a methodology is_composed of three
parts: processes, methods, and tools. Processes provide the framework
for activities. At the highest level they prescribe guiding principles, the
use of resources, a definition and hierarchy of sub-processes, the sequen-
tial order of activities; and-other constraints. Methods provide the imple-
mentation techniques within the framework of processes. Examples of
methods include requirements analysis procedures, design paradigms, test-
ing strategies and program construction procedures. Tools, such as com-
puter aided software engineering (CASE) and project management soft-
ware, support processes and methods.

Methodology is at the core of the concept of “software engineer-
ing” (SE). IEEE (1993) defines SE as the application of a “systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software.” The engineering paradigm is thus predi-
cated on well defined processes within a generally predictable environ-
ment with well defined outcomes and roles, sequential project (phased)
development, and historical information for a “best practices” ap-
proach. SE is tightly coupled to quality software development via
methodology, the means by which quality is achieved. Anyone who
has worked with a methodology, however, is accutely aware that it is
no guarantee of quality. It does provide a framework for proceeding,
for organizing and understanding the tasks ahead, so it is a good base
from.-which development can proceed.

However, every methodology is limited in two significant ways.
First, a useful methodology is developed only after systems have been
implemented, both successfully and unsuccessfully, and successful pro-
cesses and methods (“best practices”) are identified. It took a large
body of experimentation, knowledge and practice, for example, before
the parameters of the Systems Development Life Cycle (SDLC) were
well defined and stabilized. The object paradigm, embodied in object-
oriented (OO) analysis, design, and programming, had a profound im-
pact on systems development methodology (Capper, 1994). OO meth-
odologies continue to undergo rigorous experimentation, testing, and
proof (see the CETUS links website [18,452 Links] for information
and links to over 50 documented OO methodologies). This “lagging”
characteristic of methodology is especially significant because devel-
opers working in the latest paradigms, such as Internet and middleware

the proceedings of the
Copyright © 2002, Idea Group Inc.

504 Issues and Trends of IT Management in Contemporary Organizations

development, cannot rely on well-defined methodologies for structure
and guidance.

The second significant way in which methodologies are limited is
that a methodology is itself a system. A “one size fits all” approach to
software development cannot work. Certain processes are appropri-
ate for some conditions and inappropriate for others. Processes differ
because environmental factors differ—factors such as the experience
of people involved, goals, project scope, time to market, technologies
used, and many others. This concept is significant because it recog-
nizes the responsibility of developers for selecting an appropriate
methodology, or even appropriate sub-components of many different
methodologies, in order to support and promote development success.
It also highlights the flexible and adaptive nature of appropriate meth-
odology, especially in dynamic, emerging environments where change
is a dominant characteristic.

METHODOLOGY APPLIED

The case for a less methodical methodology is based on three
assertions: 1) the failure of methodology to provide consistent success
in SE; 2) the lack of well-developed, well-defined methodologies appli-
cable to a fast paced, innovative, emergent systems development en-
vironment; and 3) the need for using an appropriate approach to SE
that balances the demands of effectiveness with efficiency—a level of
methodology that is “just right.”

On Failure and Methodology

In the introduction to his widely used text on software engineer-
ing, software quality guru Roger Pressman (1997) refers to what he
calls a three-decades long “chronic affliction”, that affliction being
the ongoing problems associated with software development and the
continuing high rate of failure. Despite investments in software engi-
neering, management frameworks and development methodologies,
failures still litter the IT landscape. The reasons for failure are numer-
ous (see Lientz [2000] for an excellent annotated list) and the appli-
cation of methodology per se certainly should not be universally of-
fered as the only critical factor in success or failure. In fact, defining
“failure” is itself not a_simple task.~ For example, is a six-month
project that comes. in two weeks late a failure; or one that returns its
investment-in"36 months instead of the expected 32?

Popular estimates that claim a fifty percent or greater failure rate
are not-easily verified, but anecdotal evidence is abundant. The Standish
Group’s CHAOS survey (Johnson, 1999), for example, claims that
only 26% of 1998 projects were deemed “successful” by survey re-
spondents. Whatever the specific rate, most executives and informa-
tion technologists would probably agree that failure is significantly
more common than one should expect considering the great invest-
ment in software “engineering” concepts and discipline over-the past
decades. However failure is defined, or whatever failure rate is ac-
cepted, the point is that methodology, as a quality assurance construct
that is expected to ameliorate development problems, if not eliminate
them, has regularly failed to do so.

Methodology’s role in failure may be the result of several kinds of
errors. One explanation for failure might be an inappropriate selec-
tion of methodology among the variations available—that is, a mis-
match between the methodology and the characteristics of the devel-
opment environment. In addition to this selection failure, another
possibility is the misapplication of an appropriate methodology. A
third possibility, one that is increasingly common in an emergent
technical environment, is the situation in which there-is no appropri-
ate methodology on which developers can rely. ‘This “lagging” char-
acteristic of methodology may contribute to failure, or at least does
not assist in the avoidance of failure, because in an innovative techni-
cal environment proven methodologies are not defined and documented.
The beginning points of large software development paradigm shifts
are especially susceptible to this kind of failure.

Software development for enterprise integration is arguably a
current example of this problem. In the past five years the pressure to

integrate existing processes and systems (rather than building new
ones) or to implement packaged software (rather than developing in-
house versions) has grown tremendously. A survey by Morgan Stanley
states that 35 percent of Fortune 500 companies list integration as
their top objective (Sulllivan, 2001). Other listed objectives, such as
E-business and Customer Relationship Management, also hayve a criti-
cal integration component and, when included, would tend increase
that percentage significantly. The Boston Consulting Group (Dickel,
2000), in a survey of more than 100 CEO’s and CIO’s involved in
enterprise-wide systems implementations, reported that only 33 per-
cent of integration projects were viewed as “positive” in terms of
value creation, cost effectiveness and financial impact. Based on
investment and expectations, this is an arena in which successful meth-
odologies are much needed, but are sorely lacking.

Methodology in a Fast-Paced, Emergent Environment

IT is arguably the most disruptive force to organizations in the
past century, being both a driver and an object of organizational change.
In its role as chief enabler of better-faster-cheaper for the organiza-
tion, IT is a critical success factor for delivering competitive advan-
tage within the rapidly changing business environment. E-commerce
and E-business place a particular strain on methodology, requiring
“trade-offs between schedule, functionality, resources and quality”
(Yourdon, 2000 [2]) in an extremely demanding environment. A
contemporary software development methodology, therefore, will be
required to operate in an environment with the following characteris-
tics (adapted from Mendonca, 2000):

e A rapid pace in introduction of new technologies (software and
hardware).

* A demand for expeditious development and implementation, leading
to new.rapid development and implementation techniques.

¢ Telecommunications integrated into, and inseparable from, the com-
puting environment.

* Modularization of hardware and software, emphasizing object as-
sembly and processing.

» Integration of seemingly incompatible diverse technologies.

In this kind of emergent, unformed, somewhat chaotic environ-
ment, a traditional approach to using an optimal methodology—pre-
dictable, tested, and proven—has no application.

There is no doubt that even in environments where the pace is
not so rapid and change not so prevalent; methodology is often sus-
pected among business proponents, users, and some IT non-manage-
rial staff to be overly rigorous; bureaucratic, and burdensome to the
point of being a hindrance rather than an enabler. It is viewed as being
even more so in a fast-paced, emergent environment.

Appropriate Methodology: Just Enough

There are numerous ways to judge the success or failure of any
one particular software development effort. Measurements commonly
identified include effectiveness (does the product function as expected?);
value (does the product meet its financial and other value-enhancing
goals?); cost (is the cost justified by the benefits accrued?, is the project
within budget?); and timeliness (was the project delivered on time?).
As noted above, these parameters play against each other—that is, as
we increase resources to ensure factors such as effectiveness and time-
liness, we increase costs associated with the project, and therefore
erode efficiency valuations. A recognition of this tension in the
business environment is important to IT and non-IT staff alike.

Having no methodology at all risks chaos and possible delivery of
a product that doesn’t work or is over budget or has taken too long to
implement. On the other hand, a highly structured, rigid methodol-
ogy, what James Highsmith very descriptively calls a “monumental”
methodology (Highsmith, 2000) may be too costly because of the use
of unnecessary resources. Organizations faced with time-sensitive E-
business projects that demand quick implementation for competitive
advantage must carefully consider the options. The challenge is, of
course, to identify how much is “just right.” Under some circum-

Issues and Trends of IT Management in Contemporary Organizations 505

stances, a less rigid methodology may be more appropriate, while
under other circumstances, for example in a well-defined environment
with known deliverables, a more rigid methodology is a good choice.
The SDLC model, as embodied in formal commercially available
methodologies developed by consulting companies, is certainly an
example of the optimized, monumental approach to methodology.
Another example, arguably, is the Software Engineering Institute’s
Capability Maturity Model (CMM) for Software, which has become
widely recognized within the IT industry. It includes a detailed descrip-
tion of processes in the context of software development process
improvement (Paulk, 1995). Although it is presented primarily as a
framework for improvement, rather than a methodology per se, CMM
defines multiple “key process areas” (methods) that organizations
adopt to develop full capability in quality software development.
However, its formal procedures, detailed documentation and heavy
resource requirements have come under for inapplicability to small
and medium-sized projects and development in fluid environments.
The result has been that some proponents are now advocating using
“CMM with good judgment” to soften its inflexibility (Paulk, 1999).
A systems approach to methodology considers environmental
factors that determine not only the appropriate selection of pro-
cesses, methods, and tools, but also the appropriate level of formality
to be applied. These factors include:
1) Technology factors: What technologies are being used? Are they
new or mature? Have successful appropriate methodologies been
developed that provide a good fit for the technology?
People factors: What methodologies are developers experienced with?
Is there a good expectation of strong developer/user collaboration?
Project definition factors: Is the project well defined in scope and
objectives or will it require definition as it unfolds? What is the
expected development timeline? Can the project be subdivided in
mini-projects-with smaller deliverables?
Processes: '« Are business processes stable or does the project require
process re-engineering?

Yourdon (2000) calls this approach a “risk/reward” approach to
defining an appropriate level of resource investment in methodology.
A chaotic non-methodology development environment oriented to
“code and fix” is not an acceptable alternative; neither is an inflexible
monumental methodology in many circumstances. Fowler (2000)
suggests that a flexible, less methodical approach to methodology
attempts a “useful compromise between no process and too much
process, providing just enough to gain a reasonable payoff.”

TOWARD A LESS-METHODICAL
METHODOLOGY

What does a less methodical methodology look like and how does
it respond to the requirements described above? Indeed, is a light/lean/
extreme/adaptive/agile/appropriate methodology a methodology at
all? A contingency approach to methodology recognizes the limita-
tions of methodology, the experience of failure, and the inherent
difficulty in creating optimized methodologies in a rapidly changing
emergent environment. Its approach is to choose the processes and
techniques appropriate to a given environment, to take advantage of
the capabilities of any and all formalized methodologies, and to apply
guidelines for developing processes that may not have been fully defined.

The definition of this approach to software development contin-
ues to evolve, with many participants from the project management,
quality assurance, and software engineering disciplines joining together
to contribute. Developers of the XP concepts, notably Kent Beck and
Martin Fowler, have played an important role by way of adopting
similar principles_for flexible, adaptive programming techniques. Other
development frameworks, such as Crystal methods, Scrum, Adaptive
Software Development, and Dynamic Systems Development Methodol-
ogy have also contributed (Highsmith, 2001). James Highsmith’s book on
adaptive software development, recent writing on “agile” development,
and the Manifesto form the core of these principles and guidelines.

Fowler (2000) very accurately describes these related methodologies
as fundamentally “adaptive rather than predictive” and “people-oriented
rather than process-oriented.” While it is not the objective here to fully

2

~

3

~

4

~

define the nature of these methodologies, basic principles include:

* Agile processes that continuously respond to changes in the envi-
ronment.

* Appropriate selection of process components that reflect efficiency
in addition to effectiveness.

* An adaptive approach (frameworks) rather than adherence to pre-
defined process rules.

e Frequent, rapid delivery of smaller software components to achieve
faster feedback.

* A collaborative approach to development.

* An expectation of change during the development process.

* _ Outcomes are emergent, rather than fixed.

¢ | Creativity in problem solving.

* Dynamic re-prioritization.

The principles and guidelines of a flexible, less methodical meth-
odology continue to be described and defined. It is clear that this is a
genuinely different approach than the optimized one inherent in a
fixed and fully defined methodology. Practices such as continuous
feedback and incremental product delivery will form the core of tech-
niques for implementation of this approach. However, there clearly
needs to be further work in identifying those frameworks and practices
that support the concept and can support successful delivery of quality
software. “Somewhat ironically, like any other methodology, it will
need to be tested and proven. Considering the limitations of meth-
odology and the increasing complex environment in which software is
engineered, however, it is good potential and is worthy of our attention.

REFERENCES

18,452 Links on Objects and Components.
www.cetus-links.org.

Capper, N.P. and R.J. Colgate, 1994. “The Impact of Object-Oriented
Technology on Software Quality.” IBM Systems Journal, January.

Dickel, K. and Sirkin, H. 2000. “Getting Value from Enterprise Initia-
tives: A Survey of Executives”. Boston Consulting Group, Inc.
Available at: http://www.bcg.com/publications/files/
Enterprise_computing .report.pdf.

Fowler, M« 2000. “Put Your Process on a Diet.” Software Develop-
ment, December.

Highsmith, J.A., 2000. Adaptive Software Development: a Collabora-
tive Approach to Managing Complex Systems. Dorset House.

Highsmith, J.A., Cockburn, A., and Boehm, B., 2001. “Agile Software
Development: The Business of Innovation.” Computer, September.

IEEE, 1993, “Standards Collection: Software Engineering”, IEEE Stan-
dard 610.12-1990.

livari, J., Hirschheim, R., and Klein, H.K., 2000/2001. “A Dynamic
Framework for Classifying Information Systems Development Meth-
odologies and Approaches.” Journal of Management Information
Systems, Winter.

Johnson, J., 1999. “Turning Chaos into Success.” Software Magazine,
December.

Lientz, B.P., and Rea, K.P. On Time Technology Implementation.
London: Academic Press.

“Manifesto for Agile Software Development.” available: http://
www.agilealliance.org.

Mendonca, J., 2000. “Educating the Business Information Technolo-
gist: Developing a Strategic IT Perspective.” Proceedings of the
Information Resources Management Association.

Paulk, M., et al, 1995. The Capability Maturity Model: Guidelines for
Improving the Software Process. Pittsburg, PA: Carnegie Mellon
University, Software Engineering Institute.

Paulk, M.C., 1999. “Using the CMM With Good Judgment.” Software
Quality Professional, June.

Pressman, R. S., 1997. Software Engineering: A Practitioner’s Approach.
New York: McGraw-Hill Companies, Inc.

Sullivan, T., 2001. “Take Your Medicine.” Inforworld, August 10.

Yourdon, E., 2000. “The ‘Light” Touch.” Computerworld, September
18.

Yourdon, E., 2000, “Success in E-Projects.” Computerworld, August
21, 2000.

Website: http://

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/case-less-methodical-
methodology/31831

Related Content

Towards Knowledge Evolution in Software Engineering: An Epistemological Approach
Yves Wautelet, Christophe Schinckusand Manuel Kolp (2010). International Journal of Information
Technologies and Systems Approach (pp. 21-40).
www.irma-international.org/article/towards-knowledge-evolution-software-engineering/38998

Developing a Glossary for Software Projects

Tamer Abdou, Pankaj Kamthanand Nazlie Shahmir (2018). Encyclopedia of Information Science and
Technology, Fourth Edition (pp. 7399-7410).
www.irma-international.org/chapter/developing-a-glossary-for-software-projects/184438

Fault-Recovery and Coherence in Internet of Things Choreographies

Sylvain Cherrierand Yacine M. Ghamri-Doudane (2017). International Journal of Information Technologies
and Systems Approach (pp. 31-49).
www.irma-international.org/article/fault-recovery-and-coherence-in-internet-of-things-choreographies/178222

Applications of Swarm Intelligence in Remanufacturing

Bo Xingand Wen-Jing Gao (2015). Encyclopedia of Information Science and Technology, Third Edition (pp.
66-74).

www.irma-international.org/chapter/applications-of-swarm-intelligence-in-remanufacturing/112316

Educational Ontology Development

Galip Kayaand Arif Altun (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.
1441-1450).

www.irma-international.org/chapter/educational-ontology-development/183859

http://www.igi-global.com/proceeding-paper/case-less-methodical-methodology/31831
http://www.igi-global.com/proceeding-paper/case-less-methodical-methodology/31831
http://www.irma-international.org/article/towards-knowledge-evolution-software-engineering/38998
http://www.irma-international.org/chapter/developing-a-glossary-for-software-projects/184438
http://www.irma-international.org/article/fault-recovery-and-coherence-in-internet-of-things-choreographies/178222
http://www.irma-international.org/chapter/applications-of-swarm-intelligence-in-remanufacturing/112316
http://www.irma-international.org/chapter/educational-ontology-development/183859

