IDEA GROUPPUBLISHING

=y

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4224

A RUP-Based Software Process Supporting
Progressive Implementation

Tiago Massoni, Augusto Sampaio and Paulo Borba'
CIn-UFPE, Av. Professor Luis Freire, s/n Cidade Universitaria, Brazil
Tel: +55 81 3271 8430, Fax: +55 81 3271 8438, {tlm, acas, phmb}@cin.ufpe.br

ABSTRACT

In this paper we extend the Rational Unified Process (RUP) with a method that supports the progressive, and separate, implementation
of three different aspects: persistence, distribution_and concurrence control. This complements RUP with an specific implementation
method and helps to tame the complexity of applications that are persistent, distributed and concurrent. By gradually and separately
implementing, testing and validating such applications, we obtain two major benefits: the impact caused by requirements changes during

development is reduced; testing and debugging are simplified.

INTRODUCTION

Software development has become a more complex activity over
the last years. Clients have been increasingly demanding higher pro-
ductivity, better software quality and shorter time to market. Addi-
tional strain results from new common requirements such as distribu-
tion and concurrent access. These and other non-functional aspects
complicate implementation, test and maintenance activities. In order
to simplify those activities, we argue that it is useful to tackle func-
tional and non-functional concerns separately. In fact, whereas archi-
tectural and design activities should jointly consider both concerns
[19], implementation activities can benefit from this separation.

An implementation method might help programmers to effec-
tively achieve this separation. Therefore, we-have defined the pro-
gressive implementation method (Pim) [6], supporting a progressive
approach for object-oriented implementation in Java [7], where per-
sistence, distribution and concurrence control aspects are not initially
considered in_the implementation activities, but are gradually intro-
duced. In'this way we can significantly reduce the impact caused by
requirements changes during development, and tame complexity by
implementing and testing different aspects of code gradually. This
progressive approach is possible because this method relies on the use
of design patterns that provide a certain degree of modularity and
separation of concerns [14], in such a way that the different aspects
can be implemented separately.

In this paper we extend the Rational Unified Process (RUP) [12]
with Pim, providing proper implementation guidelines for RUP and
hoping to support the progressive implementation of different aspects
in software development projects where disciplined requirements, de-
sign and test activities are essential, demanding a software process. In
Sections 2 and 3, we respectively present the main concepts of RUP
and Pim, useful for a better understanding of our solution. Section 4
outlines the definition of RUPim, the proposed extension of RUP, and
presents some results obtained in simple practical experiments using
RUPim. Finally, Section 5 presents our conclusions and related work.

RATIONAL UNIFIED PROCESS

The Rational Unified Process (RUP) is an industrial software
process, based on the work of Booch, Jacobson and Rumbaugh at
defining the Unified Process [9]. RUP is focused on visual modeling
(UML [5]) and three key ideas: First, RUP is use-case driven—use
cases, which represent functional requirements in UML, drive the
whole development process (planning, design, implementation, tests
and deployment). Second, RUP suggests the early definition of an
stable architecture supporting key use cases (including code for an
architectural prototype), followed by the development of the other

This paper appears
Information Resources Management Association International Conference.

in Issues and Trends of Information Technology Management in Contemporary Organizations,

use cases of the application, filling the architecture baseline defined

earlier. Third, RUP has an iterative and incremental life cycle, and

each life cycle iteration develops a set of use cases, representing an
increment to the final product [12]. This process can be described in

two dimensions, as presented in Figure 1:

e The horizontal axis represents the dynamic part of the process as it
is enacted, and it is expressed in terms of four serial phases, which are
broken down into iterations. In the Inception phase the life cycle
objectives are defined, whereas in the Elaboration and Construction
phases the architecture baseline and the whole system are developed,
respectively. In the Transition phase, the product is released to the
user. Each phase has an iteration workflow, which suggests how to
perform a typical iteration of each phase;

e The vertical axis represents the static part of the process, as it is
described in terms of activities, artifacts, workers (roles played by
people to perform the activities) and workflows. Workflows are set
of activities conceptually related, but having also workflow details,
which are small sets of activities usually performed as a single one.
According to the life cycle phases, we choose which activities are
performed in each iteration.

Later we discuss how these two dimensions are affected by our
extension of RUP.

PROGRESSIVE IMPLEMENTATION
METHOD

The Progressive Implementation Method (Pim) guides the imple-
mentation of complex object-oriented applications in Java. Using this

Figure 1: RUP iterative life cycle [16]

| _ Phases
o] i ——
Anabyss B Design P e N
i i :
Implementaten * i i
Test __.—_—._.]-__.m-ﬁ
Ciegrleryrmmnl ! !
Canfy arwtion { ;
& Crasge Fignt ———— R ——,
Projech MAngament | s | o i — i
N L ZDILL il bl ol el
[terabons
the proceedings of the

Copyright © 2002, Idea Group Inc.

Issues and Trends of IT Management in Contemporary Organizations 481

Figure 2: Progressive implementation method

Persistence Distribution Concurrence
code code control code
[(125.25601=0—=@—@

Functional Functionally Persistent Persistent and Final
prototype complete prototype distributed version
prototype prototype

method, we do not consider persistence, distribution and concurrence
control aspects initially in the implementation activities. Instead, we
first build functional prototypes that evolve to a functionally com-
plete prototype. Then, the non-functional aspects.are introduced,
separately. Figure 2 illustrates this progressive approach.

Although the figure suggests an order for implementing each
non-functional aspect, this order is not enforced by the method. In
fact, the method only requires the different aspects to be implemented
separately. In principle, one aspect could be implemented at the same
time as another one, since they are supported by a modular software
architecture.

By initially abstracting from the non-functional code, developers
can, for example, quickly develop and test local, sequential and non-
persistent prototypes useful for capturing and validating user require-
ments. As functional requirements become well understood and stable,
those prototypes are used to derive a functionally complete proto-
type. In this way we can reduce the impact caused by requirements
change during development, since most changes will likely-occur-be-
fore the functionally complete prototype is: transformed into the final
version of the application. Furthermore, the progressive approach
naturally helps to tackle the complexity-inherent to persistent and
distributed applications, by allowing the gradual testing of the various
intermediate versions of the-application [6].

In order to support this progressive approach, separation of con-
cerns principles must be applied to design activities. The software
architecture must support the modular addressing of functional and
non-functional aspects during coding activities. For the non-func-
tional aspects considered here (persistence, distribution and concur-
rence control), this can be achieved with architectural and design pat-
terns [1, 13], imposing some constraints on design activities. It could
also be achieved by using an aspect-oriented programming language
[10]. For instance, we could keep persistence-related code as an as-
pect, separately from the business code, and Aspect-J [11] would in-
clude persistence to the business code.

As Pim is just an implementation method, it should be carefully
integrated to design and tests activities of a software process in order
to be used in practice. Therefore, we used Pim in the implementation
activities of RUP, integrated to its analysis, design and testing activi-
ties. The extended software process resulting from this integration is
presented in the next section.

RUPIM

In order to extend RUP with Pim, defining RUPim, we have
added some specific guidelines to RUP (as an example, analysis and
design activities were adapted to conform to the use of specific design
patterns). Similarly, we have matched corresponding concepts of RUP
and Pim (activities, tasks, steps, etc.). Furthermore,~we have also
included new types of iterations and new activities, in ordet to enforce
the progressive implementation of different aspects. In fact, we modi-
fied both the dynamic (phases and iterations) and static (workflows,
workflow details and activities) parts of RUP.

Modifications to the Dynamic Part of RUP
As RUP promotes an iterative development, the inclusion of
Pim activities to RUP workflows is insufficient for the integration. In
fact, some concepts from RUP’s phases and iterations were changed,
in order to unify Pim’s and RUP’s life cycles properly. These modifi-

cations affect the entire scheduling of iterations in a development
project, having impact on management activities.

The elaboration and construction phases received the major
modifications, whereas the inception phase was not significantly modi-
fied, receiving some small changes related to project planning. The
transition phase was not modified, since it has no direct impact on our
integration. Thus, RUPim presents some alternatives that illustrate
the iteration planning for the elaboration and construction phases.
For these two main phases, we defined two different types of iteration:

functional iterations and special iterations.

In functional -iterations, the scheduled use cases must be com-
pletely analyzed and designed (as in RUP), but partially implemented.
In the implementation activities, only business and user interface code
is considered, and data access code is implemented using volatile data
structures (Java collections, for example). In addition, distribution and
concurrence are not considered, since the application will be executed
in a single machine. During the elaboration phase, the architectural
prototype built in functional iterations is a subset of the functionally
complete prototype, as functional iterations of the construction phase
complete it.

On the other hand, special iterations basically have only imple-
mentation and test activities. These activities deal with the imple-
mentation-of non-functional code. Special iterations are also driven
by use cases, and for each use case, persistence, distribution and con-
currence control code is implemented separately. These iterations
must be executed not only in the construction phase, but also in the
elaboration phase, since the implementation of the non-functional
code involves the most important technical risks for the architecture.

From the project manager’s perspective, one or more special
iterations can be scheduled for each non-functional code. However,
general special iterations can be defined, addressing all non-functional
code in a parallel way. Although the latter approach.can optimize the
productivity of the development team, in_such scenario it is not al-
ways possible to isolate defects from 'different-non-functional code,
increasing complexity.

When scheduling /special iterations in the elaboration and con-
struction phases the project manager has basically two alternatives.
He can schedule the special iterations as the last iterations of the
corresponding phases, as showed in the example life cycle represented
in Figure 3(a). So use cases will be partially implemented in functional
iterations until a functional prototype is finished. Then, this proto-
type will evolve to a persistent and distributed application, with con-
currence control, along the special iterations. Using this approach, the
impact caused by changes in functional requirements during develop-
ment is reduced, since they will likely not affect the non-functional
code, which is implemented later in the process.

Another alternative is to plan interchanged functional and spe-
cial iterations during the elaboration and construction phases, as showed
in Figure 3(b). Unlike the first alternative, use cases are completely
implemented, in their corresponding functional and special iterations.
As an advantage, use cases are developed only once in the life cycle,
through less iterations. Furthermore, the implementation effort for
the non-functional code can be fragmented in several points in the
phase.-However, changing requirements will result in greater impact to
the code, since part of the non-functional code will be implemented
earlier in the process.

Modifications to the Static Part of RUP

Concerning the static organization of RUP, activities in some
RUP workflows were created or modified. The modifications affected
the requirements, analysis and design, implementation and test
workflows. Although activities from the configuration management
workflow are closely related to implementation activities, those ac-
tivities were not modified, since the configuration management poli-
cies must be maintained, even with Pim integrated to RUP.

As the requirements and test workflows are not directly related to
Pim activities, they were not significantly changed. In the former

482 Issues and Trends of IT Management in Contemporary Organizations

Figure 3: Alternatives for scheduling special iterations
Functional iteration

Elaboration Construction Elaboration Construction

N\

AN\

V%
%
/
%
%

A\

Z

/
7

ELLMIHHHHHIHIHII(JN

Special iteration

(a) (b)

workflow, RUPim includes guidelines on how to write code for user-
interface prototypes, stating that if the programmer decides to imple-
ment part of functional requirements in those prototypes, he must
abstract from non-functional code. This procedure can guarantee the
isolation of the functional prototypes from Pim. In the latter workflow,
RUPim includes guidelines on designing tests, in order to define differ-
ent types of tests considering functional and special iterations. The
remainder of test activities were maintained as documented on RUP.

On the other hand, the analysis and design and implementation
workflows received many modifications for the definition of RUPim,
since these workflows are directly affected by Pim’s integration to
RUP. The main modifications are presented in the following sections.

Analysis and Design

The analysis and design activities suffered two major modifica-
tions in order to suggest the use of architectural and design patterns
that allow the gradual and separate implementation of different as-
pects.

First, in the Architectural Design activity, RUPim guides the
architect to incorporate the elements from the design patterns from
Pim intothe architecture of the application. In addition, RUPim
suggests how to document the structure and behavior of design ele-
ments into architectural mechanisms, which state the relationship
between application classes (or subsystems) and design elements from
specific platforms.

Second, in the Use-case Design activity, RUPim guides the inclu-
sion of all architectural mechanisms from the Architectural Design
activity into the use-case design. This means that the use cases will be
designed using elements from Pim’s design patterns and elements from
specific middleware for implementing the non-functional code.

Implementation

This workflow suffered most of the modifications for defining
RUPim. In the Implement Components activity, instead of com-
pletely implementing classes and subsystems (as in RUP), program-
mers should implement only the business and user-interface code,
abstracting from non-functional code. The application at this point
will be local, sequential and will use in-memory data structures. It
can guarantee the correct use of Pim, which guides the initial-ab-
straction of non-functional code in order to minimize the-impact
of changing requirements.

Besides that, we created three new activities for the implementa-
tion of non-functional code for persistence, distribution and concur-
rence control, following guidelines defined elsewhere [1, 15, 18]. In
each of these activities, steps were created in correspondence to Pim
tasks for'introducing non-functional aspects. In general, these steps
address code generation of design classes related to non-functional
aspects, implementation of these classes, changes on business classes,

code documentation, etc. These activities are performed within spe-
cial iterations in the RUPim’s life cycle.
Practical Experiments

In order to validate RUPim, some practical experiments were
performed. In a simple and small-scaled empirical study, use cases
from a real web information system were developed twice; in two
distinct projects, one guided by a RUP-based methodology, and ‘other
guided by a RUPim-based methodology. Both projects were conducted
and performed by the same team of three programmers, each one
accomplishing by himself one activity at-a time.

In the RUP project, three.iterations were scheduled (one for
elaboration phase and two-for construction phase), and the team imple-
mented-a complete version of each use case of the application through
iterations of the elaboration and construction phases. The RUPim
project was decomposed into five iterations (one functional and one
special iteration for the elaboration phase, and two functional and one
special iteration for construction phase), and the team followed Pim
on implementation activities (the alternative of scheduling the special
iterations in the end of each phase was adopted). Both projects shared
the same design model, otherwise we would change the focus the study,
since we would not have an effective way to compare implementation
results on both projects.

The two projects were executed sequentially (RUP project first),
and quantitative and qualitative data were collected from each imple-
mentation and test activity accomplished by a programmer. Based on
the results of these experiments, we compared software quality and
productivity factors on the two different approaches.

Concerning software quality, we observed that, following RUPim,
the effort for changing functional requirements, measured at the point
where the complete functionality was released in the two projects,
decreased 60%, approximately. Besides that, the effort for performing
tests and fixing defects was in general 30% lower, showing that the
gradual testing along various intermediate versions of the application
helped isolating business problems from aspects problems.

In addition, concerning team productivity, we observed a total
productivity gain following RUPim (approximately 11%), due to the
lower test effort, even with the fact that programmers in RUPim had
to write more code (the test gain was significantly higher than the
coding loss). However, using RUPim an application class was edited
50% more times (by successive modifications.on the same class, for
coding business rules and aspects) and the effort for-coding test scripts
was 58% higher, approximately (by the testing of intermediate proto-
types using in-memory data structures for storing and retrieving data).
Future research will focus on-specific tools for addressing productivity
issues using RUPim, minimizing the main disadvantages of our ap-
proach.

It must be stressed that these results do not completely validate
the benefits of our approach for industrial-strenght software develop-
ment. This can only be achieved by performing and analyzing more
comprehensive experiments and case studies. In this way we would be
able to precisely validate the benefits and identify what must be im-
proved in our new method.

CONCLUSION

We have proposed an extension of the Rational Unified Process
(RUP) for supporting the progressive and separate implementation of
three different aspects: persistence, distribution and concurrence con-
trol code. The resulting software process, RUPim, complements and
improves RUP by allowing software teams to achieve the benefits of
separation of concerns in industrial development projects that are
based on RUP.

When compared to RUP, the new process offers better support to
reduce the impact of inevitable requirements changes during develop-
ment. By following RUPim, functional prototypes are tested and vali-
dated continuously, thus most changes will likely occur before imple-
menting the non-functional code, which is implemented latter in the

Issues and Trends of IT Management in Contemporary Organizations 483

project. RUPim also helps to tame the complexity of testing distrib-
uted and persistent applications, since it allows the gradual and sepa-
rate test of the application. Our beliefs were validated through simple
experiments with the development of use cases from a real applica-
tion. However, more comprehensive experiments should be performed
to better validate our approach.

Several languages and tools for separation of concerns have been
proposed [10, 17], but associated processes have received less atten-
tion. Instead of using tools or new language constructs, RUPim is based
on architectural and design patterns that try to achieve similar results
for the three types of non-functional aspects considered here: persis-
tence, distribution and concurrence control. However, as better sepa-
ration of concerns could be achieved with new language constructs and
tools, it would be useful to adapt RUPim to support them as well. We
believe that this is possible and useful for large software development
projects.

Besides RUP, other modern software processes have been re-
cently proposed [2, 4, 8]. OPEN and OOSP share many aspects with
RUP and could be extended with Pim as well, since they do not provide
specific implementation methods. We chose RUP because it is widely
used in industry nowadays [3]. Extreme Programming (XP), the other
alternative, is too focused on implementation activities, not giving
much relevance to analysis and design activities and artifacts, for
example. However, XP does not give any directions for progressive
implementation and it could be extended with Pim as well.

ENDNOTE

1 Partly supported by CNPq, Grant-521994/96-9.

REFERENCES

[1] Vander Alves and Paulo“Borba. A Design Pattern for Distributed
Applications. In XIV Brazilian Symposium of Software Engineering
— Tutorials, 4th—6th October 2000.

[2] Scott Ambler. Process Patterns: Building Large-Scale Systems Us-
ing Object Technology. Cambridge University Press, 1998.

[3] Scott Ambler. Enhancing the Unified Process. Software Develop-
ment Magazine, September 1999.

[4] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[5] Grady Booch et al. The Unified Modeling Language User Guide.
Object Technology. Addison-Wesley, 1999.

[6] Paulo Borba, Saulo Araujo, Hednilson Bezerra, Marconi Lima, and
Sérgio Soares. Progressive implementation of distributed Java appli-
cations. In Engineering Distributed Objects Workshop, ACM Inter-
national Conference on Software Engineering, pages 40-47, Los
Angeles, USA, 17th—18th May 1999.

[7] James Gosgling, Bill Joy, and Guy Steele. The Java Language Speci-
fication. Addison-Wesley, 1996.

[8] I. Graham, B. Henderson-Sellers, et al. The OPEN Process Specifica-
tion. ACM Press, Addison-Wesley, 1997.

[9] Ivar Jacobson et al. The Unified Software Development Process.
Object Technology. Addison-Wesley, 1999.

[10] G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of
11th European Conference on Object-Oriented Programming,
ECOOP’97, pages 220-242, June 1997.

[11] Gregor Kiczales et al. An Overview of Aspect]. In Proceedings of
the 15th European Conference on Object-Oriented Programming,
ECOOP 2001, pages 327-353; Budapest, Hungary, 18th-22th June
2001.

[12] Philippe Kruchten: Rational Unified Process - An Introduction.
Addison-Wesley, 1999.

[13] Tiago Massoni, Vander Alves, Sérgio Soares, and Paulo Borba.
PDQC: Persistent Data Collections Pattern. In First Latin-american
Conference on Pattern Languages of Programming: SugarLoafPLop
2001. October 3rd-5th, 2001. Rio de Janeiro, Brazil. To be pub-
lished.

[14] David L. Parnas et al. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of ACM, 15(12):1053-1058,
December 1972.

[15] Sérgio Soares and Paulo Borba. Concurrence Control with Java and
Relational Databases (in portuguese). In V' Brazilian Symposium of
Programming Languages, 23th-25th May 2001.

[16] Rational Software Corporation. RUP Web Site 2001. http://
www.rational.com/products/rup.

[17] Peri Tarr et al. N Degrees of Separation: Multi—dimensional Sepa-
ration of Concerns. In 7999 International Conference on Software
engineering, pages 107-119."ACM,_1999.

[18]-Euricélia Viana. Integrating Java with Relational Databases (in
portuguese). Master’s thesis, Centro de Informatica, UFPE, 2000.

[19] Jim Waldo et al. A Note on Distributed Computing. In Mobile
Object Systems: Towards the Programmable Internet, pages 49—64.
Springer-Verlag, 1997.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/rup-based-software-process-

supporting/31824

Related Content

Video Event Understanding

Nikolaos Gkalelis, Vasileios Mezaris, Michail Dimopoulosand loannis Kompatsiaris (2015). Encyclopedia of
Information Science and Technology, Third Edition (pp. 2199-2207).
www.irma-international.org/chapter/video-event-understanding/112630

Design and Implementation of Smart Classroom Based on Internet of Things and Cloud
Computing

Kai Zhang (2021). International Journal of Information Technologies and Systems Approach (pp. 38-51).
www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-

computing/278709

A CSP-Based Approach for Managing the Dynamic Reconfiguration of Software Architecture
Abdelfetah Saadi, Youcef Hammaland Mourad Chabane Oussalah (2021). International Journal of
Information Technologies and Systems Approach (pp. 156-173).
www.irma-international.org/article/a-csp-based-approach-for-managing-the-dynamic-reconfiguration-of-software-
architecture/272764

A New Bi-Level Encoding and Decoding Scheme for Pixel Expansion Based Visual
Cryptography

Ram Chandra Barik, Suvamoy Changderand Sitanshu Sekhar Sahu (2019). International Journal of Rough
Sets and Data Analysis (pp. 18-42).
www.irma-international.org/article/a-new-bi-level-encoding-and-decoding-scheme-for-pixel-expansion-based-visual-

cryptography/219808

A Hybrid Approach to Diagnosis of Hepatic Tumors in Computed Tomography Images
Ahmed M. Anter, Mohamed Abu EI Souod, Ahmad Taher Azarand Aboul Ella Hassanien (2014).
International Journal of Rough Sets and Data Analysis (pp. 31-48).
www.irma-international.org/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-
images/116045

http://www.igi-global.com/proceeding-paper/rup-based-software-process-supporting/31824
http://www.igi-global.com/proceeding-paper/rup-based-software-process-supporting/31824
http://www.irma-international.org/chapter/video-event-understanding/112630
http://www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-computing/278709
http://www.irma-international.org/article/design-and-implementation-of-smart-classroom-based-on-internet-of-things-and-cloud-computing/278709
http://www.irma-international.org/article/a-csp-based-approach-for-managing-the-dynamic-reconfiguration-of-software-architecture/272764
http://www.irma-international.org/article/a-csp-based-approach-for-managing-the-dynamic-reconfiguration-of-software-architecture/272764
http://www.irma-international.org/article/a-new-bi-level-encoding-and-decoding-scheme-for-pixel-expansion-based-visual-cryptography/219808
http://www.irma-international.org/article/a-new-bi-level-encoding-and-decoding-scheme-for-pixel-expansion-based-visual-cryptography/219808
http://www.irma-international.org/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-images/116045
http://www.irma-international.org/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-images/116045

