
382 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
Workflow Management Systems (WFMS) have been strongly tied to the database technology by most commercial and research models.
This link came without a lot of consideration to the differences between the two environments. Therefore, it is important to consider each
technology�s requirements during the design and implementation.
 I/O automata are ideal to model Workflows, where workflows are considered as black boxes (automata) with only inputs and outputs
visible to the outside world. The recovery system uses I/O automata to model recovery-workflows too. In addition, forward recovery is
important to use in WFMS, because undo and rollback recoveries can only be good for DBMS.

Recovery in Workflow Management Systems
Sulaiman Al-Turki

K.K.M.A., Saudi Arabia, sulaiman_alturki@hotmail.com

Danilo Montesi
Department of Computer Science, University of Bologna, Italy, motesi@cs.unibo.it

INTRODUCTION
Most shared environments are (generally) looked at as a com-

bination of two problems, concurrency control and recovery, which
have been considered as orthogonal problems. However, the devel-
opments of recovery and concurrency control mechanisms have
been done independently, which has led to incompatibility [15].
Furthermore, most models have not addressed forward recovery for
logical (semantical) failure. Forward recovery is important for
workflow management systems, because there are number of realis-
tic work environments that cannot use rollback recovery mecha-
nism, such as the drilling of a hole, which cannot be undone or
rolled-back.

Hence, forward recovery is not an option to be used in a WFMS,
but is considered as a must. Long running activities ([6]) are com-
mon in the workflow environment and to have the process undone
or redone in case of failure is impractical and very expensive. For
example, when a solicitor in a house purchase dies or retire before
the completion of the house purchase process, it will be very im-
practical to undo all the work that has been done and then re-
execute all workflows again with another solicitor. Hence, a better
method is to forward the work to another solicitor and finish the
house purchase.

Research in workflow management systems has been active for
several years, and the need for modeling exceptions in information
systems has been widely recognized. However, none of the work has
produced an exception handling mechanism that suits a realistic work
environment. Some current WFMS provide recovery mechanisms that
aid workflow database (the movement of data items) failures, but all
other failures are handled manually. In general, current commercial
and research models do not have a satisfactorily failure handling mecha-
nisms for heterogeneous and distributed environments, because ad-
vanced transactional models are more data-centric [14]. Another prob-
lem is that transactional and non-transactional workflow models that
were built on database concepts have the atomicity issue. To guarantee
atomicity, all shared objects have to be atomic [17]. This will be very
expensive to bear in a WFMS environment, because there many cases
that partial work can be acceptable.

Conventional DBMS provide a variety of recovery schemes, based
on logging of update operations, periodic checkpointing of the entire
database, and shadow page techniques. These techniques guarantee that
transactions are executed atomically, i.e., if a crash occurs during the
execution of a transaction, the system will recover to a state in which
either all the updates of the transaction will be reflected (if the trans-
action had already been committed) or none will (if the transaction
had not been committed).

Section 2 gives the reader a background on what some commer-
cial and research WFMS models have done in the recovery area. I/O
automata are introduced in Section 3. Section 4 presents the proposed
recovery mechanism using I/O automata.

BACKGROUND
There are number of commercial and research workflow models

that have discussed the recovery issue. This section will try to give the
reader an overview of what some of the well-known models have done
on recovery.

FlowMark: FlowMark is an IBM workflow product that uses
persistent queuing mechanism. The persistent queuing mechanism
facilitates forward recovery from system failures [3]. The message
will be sent persistently until the remote site declares a successful
reception of the message. However, if the information regarding
the execution of an activity is lost during a recovery from a system
failure, it will be the responsibility of the user to intervene and
resolve this failure [12]. Semantic failure is handled through partial
rollback and compensation (logical undo). Compensation of failed
workflows is considered (generally) retriable until successful comple-
tion.

Action Workflow: Metro and all other Action Technologies,
Inc. products log the data into SQL (Structured Query Language) server
then all recoveries are done in a rollback fashion. The customer or the
performer can cancel the workflow activity and the system will rein-
state the previous state (undo).

WAMO: The recovery mechanism in WAMO is categorized
according to the type of workflow, such as document-oriented and
process-oriented workflows. The system identifies different types of
failures, i.e., system failure or semantic failure. In case of system
failure, the workflow recovery manager (WRM) will initiate a forward
crash recovery. Any uncommitted activities are removed, which is
done through rollback. It is left to the local application to handle the
semantic recovery from the system crash (failure). The recovery mecha-
nism used in WAMO is clearly drawn from the database environment,
since the main emphasis was on rolling back, compensation and undo-
ing some of the effects caused by a failed activity.

WIDE: The WIDE model is a well-structured one, which was
divided into two major components (Organizational and Process
models) that enable the designer to set the responsibilities of agents
and the definition of workflow activities. This feature is a major
advantage in the WIDE model. However, the descriptions of human
agents (social agents) are modeled using transactional representa-
tions. The reason behind using transactional representation is be-
cause the WIDE model is based on a commercial database applica-
tion. Another disadvantage of the WIDE model is that it uses an
optimistic concurrency control, which can cause costly recoveries
from workflow failures.

The recovery mechanism in the WIDE model is based on partial
rollback and then re-executing [5]. The rollback mechanism is applied
to return the workflow to a state identical to the previous state from
the perspective of business view but not from the database view. Com-
plete rollback is impractical, hence, savepoints are used to partially
rollback and the re-execute.

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4216
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 383

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

I/O AUTOMATA
Several references on the subject, such as [13], [4] and [10], have

defined a task (process) as a state machine (automaton) that has a
behavior through a state transition diagram. State diagrams provide
some advantages over other approaches, such as active rules that are
widely used in the database environment. Some of the advantages are:
� Simpler to understand and design.
� Can model hierarchical structure in a natural graphical style.
� Makes updating and debugging a much simpler task.

Overview of the I/O Automata
The I/O automata was first formally introduced in [10] and [11]

to handle concurrent and distributed events. Each system component
is modeled with an I/O automaton, which is very similar to the tradi-
tional finite-state automaton. The resulting automaton model is used
to describe correct concurrent algorithms. The I/O automata system is
not just meant to receive inputs and perform some computation, but it
is meant to continuously receive inputs and react to its environment.
One of the advantages in using the I/O automata is that it is best used
for asynchronous environments [18]. Also, the I/O automata model
suits concurrent and distributed environments [16].

There are three types of actions in the I/O automata model:
input, output and internal. These three types of actions are catego-
rized into two categories:
� Actions that are within the control of the automaton (internal and

output actions).
� Actions that are controlled by the environment (input actions).

An automaton can model an entire system or single component.
Hence, it is important that an automaton retains some information
about the system being modeled. This information is substituted with a
scheduler that will give the information needed to execute each au-
tomaton.

The output of automata is going to be the input of others that use
the same name of the action, i.e., if À is an output action of an
automaton, it is going to be the input action for other automata that
uses À. This means that an automaton generates autonomously and
instantaneously output actions to all automata that use the same ac-
tion as an input. Hence, each automaton is required to respond to each
input. This property is used to define the composition of the I/O
automata by having several automata yield a single automaton.

One of the advantages of the I/O automata model is that it allows
description of algorithms and systems at different levels of abstraction
[8] and [9]. For example, if A2 is an image of A1 under some abstrac-
tion mapping and A2 solves a problem P, then A1 solves P. Another
advantage of the I/O automata model is that it allows a simple language
to describe the automata through precondition and effect specifica-
tions. Although this notation is bit more restrictive than other pro-
gramming languages, the I/O automata model does not constrain the
user to describe the whole system using the precondition-effect nota-
tion. The I/O automata model is a general one that can be used as the
basis for concurrent programming languages.

RECOVERY IN WFMS
It is unreasonable to expect workflow systems to behave like

database systems in the case of exceptions or failures. A workflow
system deals with a heterogeneous environment, which has human

Input Output
Internal

Figure 1: I/O automata

involvement. Hence, it is necessary to model a recovery system that
can handle all types of exceptions and allow different applications to
handle errors internally and independently from the workflow system.

When an error or inconsistent result is produced from the execu-
tion of a workflow, there should be a preset method or tool to correct
the error. Most of the previous work on workflow management sys-
tems recovery has been strongly affected by the pull of the database
mechanisms, namely rollback and compensation. However, workflow
management systems need a more practical approach that models
recovery for work and business environments. For example, signing a
contract cannot be rolled-back as if it has never been signed, because in
a natural business environment there must be some forward action that
needs to be taken to reimburse a client or an establishment.

Recovery Automata
The I/O automata presented in [11] has been used in modeling

workflows. Borrowing the concept of workflow automata from [1],
workflows recovery is cascaded into recovery automata. In Figure 2, I/
O automata represent the scheduler, all workflow trees and the recov-
ery. The scheduler automaton interacts with the other components
through input and output operations, where these operations act as the
communication tool between workflow automata.

Recovery automaton is responsible for handling semantic failures
that are reported by the scheduler [2]. Each categorized error or ex-
ception has a tree structure that spans in a predetermined scheme.
Each component of the tree is considered as a workflow automaton.
The root initiates the beginning of the recovery process.

When the scheduler receives a failure flag from one of the workflow
automata, it fetches the list of semantic failures to find the appropri-
ate response. The scheduler then will activate the appropriate recov-
ery tree to resolve that failure. The recovery tree can in turn call on
another tree to execute specific tasks.

workflow or site

Data or Human activity

Actual link (serial or concurrent)

Imaginary link (serial or concurrent)

 Scheduler
Automaton

Workflow
automaton

Processing
automaton

Sub-
workflow

automaton

Subsub-
workflow

automaton

Subsub-
workflow

automaton

Subsub-
workflow

automaton

Sub-
workflow

automaton

Subsubsub-
workflow

automaton

Recovery
Automaton

Figure 2: Scheduler automation with recovery

384 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Forward Recovery (Semantically)
Defining the type of recovery is as important as imposing a

recovery mechanism for a WFMS. Forward recovery seems to be the
ideal and most suitable mechanism for WFMS. Forward recovery is the
activity of proceeding with the execution of a failed workflow without
the need for rollback or re-executing while preserving the accomplish-
ment of the failed workflow and the other workflows that depended on
its results. As mentioned above there are two types of failures: System
and Semantic (logical). System failures, such as a system crash from
power failure, is well known and it has been investigated thoroughly in
many areas. The forward recovery mechanism for a system failure
means starting an execution from the last saved state. Hence, recover-
ing from system failure is simpler than the recovery from semantic
failure. WFMS needs a true forward recovery mechanism for semantic
failure, because compensation and rollback in WFMS are not possible
in all situations, for example, when a bullet is shot into a wall it cannot
be compensated or rolled back into the gun. Although, [7] identifies
this issue, no proposed solution was discussed. FlowMark model�s in-
terpretation to forward recovery is only for system failures. The com-
pensation of semantic failure in FlowMark is done through several
retries until it succeeds [3].

In many literatures the concept of recovery is done through
partial rollback and re-execution. The main problem with rollback of
a database transaction or a workflow is that when a transaction (T) or
a workflow (Wf) is rolled back, all other transactions or workflows
that used T or Wf have to be rolled back too. Hence, this is an expen-
sive method and can lead to cascading rollbacks. Most forward recov-
ery in the literature, such as [3] and [14], deal with system failures,
which borrow the concept of persistent recovery from the operating
system. Since WFMS is a heterogeneous environment, rollback or
compensation is not options to be considered. In a heterogeneous
environment as WFMS, compensations will try to restore database
items to preserve a consistent state, but WFMS�s need more than just
that. In case of a logical failure, WFMS needs to preserve the state of
the work environment, e.g., if a cancellation occurs, not only restor-
ing the database as if nothing has happened but to apply any penalties
that has occurred from the cancellation. Also, in WFMS there is a need
to consider the fact that if a workflow fails semantically, i.e., the work
cannot be continued or gives inconsistent results, a forward recovery
needs be performed even if it commits. For example, if the buyer or
the seller cancels a house purchase process, a forward recovery has to
take care of deregistering the property and penalizing the person who
cancelled the process.

Hence, WFMS needs a more realistic and practical recovery mecha-
nism that will consider both human and application factors of the
automated processes. There are number of benefits of using I/O au-
tomata to model a recovery mechanism for a WFMS:
� I/O automata give a higher level of flexibility than other recovery

mechanisms, because it allows human intervention whenever needed.
� I/O automata allow specific applications to design their own recov-

ery mechanisms independently.
� It is easy to add new exceptions (failures) or to modify old ones.

Another component need to be added to the recovery model is
the use of workflow semantics. Designing a recovery system should
consider and exploit the semantics of the application to reduce the
cost of recovery. The forward recovery mechanism needs to consider
the semantics of the workflow when building a new I/O automaton
recovery tree.

Working Example
A house purchase process involves number of activities. The

main ones are:
1. Collecting information on the buyer, such as name, details of the

property desired, income, ...etc.
2. Collecting information on the seller, such as name, details of the

property desired to sell, ...etc.
3. Getting a mortgage, which involves collecting credit background on

the buyer and get the real value of the property through a surveyor.

4. The lawyer has to be contacted and it is the duty of the lawyer to
prepare the contract.

5. Once all parties have signed the contract, the Land Registry Office
has to be notified by the lawyer to change the property to the new
owner.

If everything works in a correct order all the time, there will be
no need for recovery. However, things can go wrong in reality. If the
buyer withdrawals from the purchase process after the name on the
property has been changed to his/her, there will be a need to activate
the recovery procedure (tree). When such a withdrawal occurs, the
scheduler will be notified. The scheduler then checks with the recovery
automaton as to what tree should be activated.

The scheduler in this example activates the tree called After_Reg.
Each box in Figure 3 resembles an automaton that is responsible for a
specific activity. After_Reg automaton may acts as a Legal Depart-
ment that needs to coordinate all withdrawal procedures. Once the
tree has been activated, a predefined procedure is immediately fol-
lowed. The After_Reg automaton will concurrently activate three
siblings: LRO (Land Registry Office), Fine_Payment and
Find_Customer. The LRO automaton is responsible of contacting the
LRO to restore the original owner�s name. The Fin_Payment automa-
ton is responsible for finding a method of collecting the payment, such
as a collection agency, from the buyer as penalty of the withdrawal.
The Find_Customer automaton will communicate with the Sales De-
partment to put the property on the market.

Each of the above mentioned automata have specified external
operations (inputs and outputs) that are controlled by the scheduler
automaton. However, the internal activity and the method of com-
pleting the designed task is the responsibility of the performer. For
example, the LRO can use whatever method of restoring the original
owner�s name, such as database or manual filing system.

LRO

After_Reg

Reg

Fine_Payment

Get_Fine

Find_Customer

Figure 3: Recovery tree for canceling the purchase process

CONCLUSION
Numbers of WFMS models (commercial and research) have not

paid a great deal of attention to the recovery process, because of
number of reasons. One of those reasons is that recovery from failure
has not been thought of until the end of the design of the model. Also,
there are well-known recovery mechanisms that are widely used and
can be borrowed and applied on WFMS without paying much attention
to the complexity of using such mechanisms. However, neglecting the
recovery mechanism can be costly to the user of the WFMS.

Issues and Trends of IT Management in Contemporary Organizations 385

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

This paper has presented a method that can be used in designing
both the WFMS and its recovery mechanism. Unlike most WFMS
models, the recovery mechanism presented here has been thought of
and considered during the design of the WFMS. The I/O automata give
great deal of flexibility to the system and user in a structured manner.
An automaton is capable of modeling a single component, such as a
printer or a single human activity, or a complete system, such as a
DBMS. Furthermore, the I/O automata allow system designers to use
any language desired in implementing the complete WFMS or a single
component.

REFERENCES
[1] Sulaiman Al-Turki and Danilo Montesi. �Workflow in Black Boxes�.

In Proceed ings of the Collaboration and Information Society Con-
ference IS�2001, Ljubljana, Slovenia, October 22-26, 2001.

[2] Sulaiman Al-Turki and Danilo Montesi. �Coordination in Workflow
Management Systems�. In Proceedings of the 11th Workshop on
Information Technologies and Systems WITS�01, New Orleans,
U.S.A., 15-16 December 2001.

[3] G. Alonso, M. Kamath, D. Agrawal, A. El Abbadi, R. Günthör, and C.
Mohan. �Failure Handling in Large Scale Workflow Management
Systems�. Technical report, IBM Research Report RJ9913, Novem-
ber 1794.

[4] Paul Attie, Munindar Singh, Amit Sheth, and Marek Rusinkiewicz.
�Specifying and Enforcing Intertask Dependencies�. In Proceedings
of the Ninteenth VLDB, Irland, 1993.

[5] L. Baresi, F. Casati, S. Castano, S. Ceri, M.G. Fugini, I. Mirbel, B.
Pernici, G. Pozzi, and P. Grefen. �WIDE Workfllow Development
Methodology�. Technical Report 3027-6, ESPRIT Project 20280,
03-03-1999.

[6] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. �A Transactional
Model for Long-Running Activities�. In Proceedings of the 17th
International Conference on Very Large Data Bases, Barcelona,
Catalonia ,Spain, September 3-6, 1991.

[7] Johann Eder and Walter Leibhart. Workflow Transactions, pages
195 � 202. John Wiley and Sons Ltd., U.S.A., 1997.

[8] Alan Fekete, Nancy Lynch, and William Weihl. �A Serialization
Graph Construction For Nested Transactions�. Technical report,
Massachusetts Institute of Technology, Laboratory of Computer
Science, 1990.

[9] Dean Kuo. �Model and Verification of Data Manager Based on AR-
IES�. ACM Transaction on Database Systems, 21(4), Dec. 1996.

[10] N. Lynch and M. Tuttle. �Hierarchical Correctness Proofs for
Distributed Algorithms�. In Proceedings of the 6th ACM Sympo-
sium on Principles of Distributed Computation, 1987.

[11] Nancy Lynch and Mark Tuttle. �An introduction to Input/Output
automata�. CWI-Quarterly, 2(3), 1989.

[12] C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Günthör, and M.
Kamath. �Exotica: A Project on Advanced Transaction Manage-
ment and Workflow Systems�. ACM SIGOIS Bulletin, 16(1), August
1995.

[13] Amit Sheth and Marek Rusinkiewicz. �On Transactional Workflows�.
Data Engineering Bulletin, 16(2):37�40, 1993.

[14] Amith Sheth and Devashish Worah. �Transactions in Transac-
tional Workflows�, pages 3�34. Kluwer Publisher, U.S.A., 1997.

[15] Radek Vingralek, H. Hasse-Ye, Yuri Breitbart, and Hans-Jrg Schek.
�Unifying Concurrency Control and Recovery of Transactions with
Semantically Rich Operations�. Theoretical Computer Science,
190(2), 20 January 1998.

[16] William E. Weihl. �The Impact of Recovery on Concurrency Con-
trol�. Journal of Computer and System Sciences (JCSS), 47(1), 1993.

[17] William E. Weihl. �Local Atomicity Properties: Modular
Concurrency Control for Abstract Data Types.�. ACM Transactions
on Programming Languages and Systems (TOPLAS), 11(2), April
1989.

[18] Sue-Hwey Wu, Scott A. Smolka, and Eugeune W. Stark. �Composi-
tion and Be-haviors of Probablistic I/O Automata�. Theoretical Com-
puter Science, 176(1�2), 1997.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/recovery-workflow-management-

systems/31797

Related Content

High-Level Features for Image Indexing and Retrieval
Gianluigi Ciocca, Raimondo Schettini, Claudio Cusanoand Simone Santini (2015). Encyclopedia of

Information Science and Technology, Third Edition (pp. 5916-5925).

www.irma-international.org/chapter/high-level-features-for-image-indexing-and-retrieval/113049

Logistics Distribution Route Optimization With Time Windows Based on Multi-Agent Deep

Reinforcement Learning
Fahong Yu, Meijia Chen, Xiaoyun Xia, Dongping Zhu, Qiang Pengand Kuibiao Deng (2024). International

Journal of Information Technologies and Systems Approach (pp. 1-23).

www.irma-international.org/article/logistics-distribution-route-optimization-with-time-windows-based-on-multi-agent-deep-

reinforcement-learning/342084

Software to Optimize Productivity and Efficiency
William Philip Walland Adiwit Sirichoti (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 5263-5270).

www.irma-international.org/chapter/software-to-optimize-productivity-and-efficiency/112975

A New Bi-Level Encoding and Decoding Scheme for Pixel Expansion Based Visual

Cryptography
Ram Chandra Barik, Suvamoy Changderand Sitanshu Sekhar Sahu (2019). International Journal of Rough

Sets and Data Analysis (pp. 18-42).

www.irma-international.org/article/a-new-bi-level-encoding-and-decoding-scheme-for-pixel-expansion-based-visual-

cryptography/219808

Sustainability Reporting Framework for Voluntary Reporting or Disclosure in Turkey
Ganite Kurtand Tugba Ucma Uysal (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 44-52).

www.irma-international.org/chapter/sustainability-reporting-framework-for-voluntary-reporting-or-disclosure-in-

turkey/112313

http://www.igi-global.com/proceeding-paper/recovery-workflow-management-systems/31797
http://www.igi-global.com/proceeding-paper/recovery-workflow-management-systems/31797
http://www.irma-international.org/chapter/high-level-features-for-image-indexing-and-retrieval/113049
http://www.irma-international.org/article/logistics-distribution-route-optimization-with-time-windows-based-on-multi-agent-deep-reinforcement-learning/342084
http://www.irma-international.org/article/logistics-distribution-route-optimization-with-time-windows-based-on-multi-agent-deep-reinforcement-learning/342084
http://www.irma-international.org/chapter/software-to-optimize-productivity-and-efficiency/112975
http://www.irma-international.org/article/a-new-bi-level-encoding-and-decoding-scheme-for-pixel-expansion-based-visual-cryptography/219808
http://www.irma-international.org/article/a-new-bi-level-encoding-and-decoding-scheme-for-pixel-expansion-based-visual-cryptography/219808
http://www.irma-international.org/chapter/sustainability-reporting-framework-for-voluntary-reporting-or-disclosure-in-turkey/112313
http://www.irma-international.org/chapter/sustainability-reporting-framework-for-voluntary-reporting-or-disclosure-in-turkey/112313

