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ABSTRACT
Composite object represented as a directed graph is an important data structure which requires efficient sup­port in CAD/CAM, CASE,
office systems, software man­agement, web databases and document databases. It is cumbersome to handle such an object in relational
database systems when it involves recursion relationships. In this pa­per, we present a new encoding method to support the effi­cient
computation of recursion. In addition, we devise a linear time algorithm to identify the sequence of spanning trees (forests) w.r.t. a
directed acyclic graph (DAG), which covers all the edges of the graph. Together with the new en­coding method, this algorithm enable
us to compute recur­sion w.r.t. a DAG in time O(e), where e represent the number of the edges of the DAG. More importantly, this method
is especially suitable for a relational environment.

INTRODUCTION
It is a general opinion that relational database systems are inad-

equate for manipulating composite objects which arise in novel appli-
cations such as web and document databases [MMM97, ACCM97,
CA98, CA99], CAD/CAM, CASE, office systems and software man-
agement [BKKG88, Te96]. Especially, when recursive relationships
are involved, it is cumbersome to handle them in relational systems.

A composite object can be generally represented as a direct-ed
graph. For example, in a CAD database, a composite ob-ject corre-
sponds to a complex design, which is composed of several subdesigns
[BKKG88]. Often, subdesigns are shared by more than one higher-
level designs, and a set of design hierarchies thus forms a directed
acyclic graph (DAG). As another example, the citation index of scien-
tific literature, recording reference relationships between au-thors,
constructs a directed cyclic graph. As a third example, we consider the
traditional organization of a company, with a variable number of man-
ager-subordinate levels, which can be represented as a tree hierarchy.
In a relational system, composite objects must be fragmented across
many rela-tions, requiring joins to gather all the parts. A typical
ap-proach to improving join efficiency is to equip relations with hid-
den pointer fields for coupling the tuples to be joined [Ca90].

Recently, a new method has been proposed by Teu-hola [Te96],
in which the information of the ancestor path of each node is packed
into a fix-length code, called the signa-ture. Then, the operation to
find a transitive closure can be performed by identifying a series of
signature intervals. No joins are needed. Using Teuhola�s method, CPU
time can be improved up to 93% for trees and 45% for DAGs in
compar-ison with a method which performs a SELECT command
against each node, where the relation to store edges is equipped with a
clustering index on the parent nodes [Te96].

In this paper, we follow the method proposed in [Te96], but using
a different encoding approach to pack �ancestor paths�. For example,
in a tree hierarchy, we associate each node v with a pair of integers (a,
b) such that if v�, another node associated with (a�, b�), is a descendant
of v, some arithmet-ical relationship between a and a�, as well as b and
b� can be determined. Then, such relationships can be used to find all
descendants of a node and the recursive closure w.r.t. a tree can be
computed very efficiently. This method can be generalized to a DAG
or a directed graph containing cycles by decomposing a graph into a
sequence of trees (forests), in which the approach described above can
be employed. As we can see later, a new method can be developed based
on the techniques mentioned above, by which recursion can be evalu-
ated in O(e) time, just as an algorithm using adjacency lists. (The
adjacency list is a common data structure to store a graph in computa-
tional graph theory [Me84].) However, our method is especially suit-
able for the implementation in a relational environment.

TASK DEFINITION
We consider composite objects represented by a directed graph,

where nodes stand for objects and edges for parent- child relationships,
stored in a binary relation. In many appli-cations, the transitive clo-
sure of a graph needs to be comput-ed, which is defined to be all
ancestor- descendant pairs. A lot of researches have been directed to
this issue. Among them, the semi-naive [BR86] and the logarithmic
[VB86] are typi- cal algorithmic solutions.

Another main approach is the ma-terialization of the closure,
either partially or completely [AJ89, Ja90]. Recently, the implemen-
tation of the transitive closure algorithms in a relational environment
has received extensive attention, including performance and the
adapta-tion of the traditional algorithms [ADJ90, AJ90, IRW93, DR94].

The method proposed in this paper can be characterized as a
partial materialization method. Given a node, we want to compute all
its descendants efficiently based on a special-ized data structure. The
following is a typical structure to ac-commodate part-subpart rela-
tionship [CS92]:
� Part(Part-id, Part-rest)
� Connection(Parent-id, Child-id, Conn-rest)
where Parent-id and Child-id are both foreign keys, referring to Part-
id. In order to speed up the recursion evaluation, we�ll associate each
node with a pair of integers which helps to recognize the ancestor-
descendant relationship.

In the rest of the paper, the following three types of graphs will
be discussed.
(i) Tree hierarchy, in which the parent-child relationship is of one-to-

many type, i.e., each node has at most one parent.
(ii) Directed acyclic graph (DAG), which occurs when the relationship is

of many-to-many type, with the re-striction that a part cannot be
sub/superpart of itself (directly or indirectly).

(iii) Directed cyclic graph, which contains cycles.
Later we�ll use the term graph to refer to the directed graph,

since we do not discuss non-directed ones at all.

LABELING A TREE STRUCTURE
In the method proposed in [Te96], each node v is associated with

an interval (l, h), where l and h are two signatures each consisting of a
bit string. These bit strings are constructed in such a way that if the
interval associated with a descendant of v is (l�, h�), then l £ l� and h ³
h� hold. Although this meth-od is incomparably superiors to a trivial
method, it suffers from the following disadvantages:
(1) This method is space-consuming since signatures tend to be very

long.
(2) The size of signatures has to be pre-determined. Different applica-

tions may require different sig-nature lengths. This can be tuned only
manually.
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(3) There may exist the so-called signature conflicts, i.e., two nodes
may be assigned the same signature.

In the following, we search for remedies for these three draw-backs.
First, we discuss a tree labeling method to demon-strate the main idea
of the improvement in this section. The discussion on general cases
will be postponed to Section 4.

Consider a tree T. By traversing T in preorder, each node v will
obtain a number pre(v) to record the order in which the nodes of the
tree are visited. In the same way, by traversing T in postorder, each
node will get another number post(v). These two numbers can be used
to characterize the ancestor-descendant relationship as follows.

Proposition 1. Let v and v� be two nodes of a tree T. Then, v� is
a descendant of v iff pre(v�) > pre(v) and post(v�) < post(v).

Proof. See [Kn73].
If v� is a descendant of v, then we know that pre(v�) > pre(v)

according to the preorder search. Now we assume that post(v�) > post(v).
Then, according to the postorder search, either v� is in some subtree on
the right side of v, or v is in the subtree rooted at v�, which contradicts
the fact that v� is a de-scendant of v. Therefore, post(v�) must be less
than post(v).

The following example helps for illustration.
Example 1. See the pairs associated with the nodes of the graph

shown in Fig. 1(a). The first element of each pair is the preorder
number of the corresponding node and the second is the postorder
number of it. Using such labels, the ancestor-descendant relationship
can be easily checked.
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Figure 1: Labeling a tree

For example, by checking the label associated with b against the
label for f, we know that b is an ancestor of f in terms of Theorem 1.
We can also see that since the pairs associated with g and c do not
satisfy the condition given in Theorem 1, g must not be an ancestor of
c and vice versa.

According to this labeling strategy, the relational schema to handle
recursion can consists of only one relation of the fol-lowing form:

Node(Node_id, label_pair, Node_rest),
where label_pair is used to accommodate the preorder num-ber and the
postorder number of each node, denoted label_pair.preorder and
label_pair.postorder, respectively. Then, to retrieve the descendants
of node x, we issue two queries. The first query is very simple as shown
below:

SELECT label_pair
FROM Node
WHERE Node_id =  x
Let the label pair obtained by evaluating the above query be y.

Then, the second query will be of the following form:
SELECT *
FROM Node
WHERE label_pair.preorder > y.preorder

and label_pair.postorder < y.pos-torder
From the above discussion, we can see that the three draw-backs

of Teuhola�s method [Te96] mentioned above can be eliminated: (1)
each node is associated with only a pair of integers and therefore the

space overhead is low; (2) the size of each label pair remains the same
for all applications; (3) there is no signature conflicts since each label
pair is differ-ent from the others.

In the following, we show another two important technique to
identify the sibling relationship and the parent-child rela-tionship.

For the first task, consider a new labeling method as shown in Fig.
1(b). First we assign 1 to the root; then during the breadth-first tra-
versal we number the children of each node consecutively from x + 2,
where x is the largest number as-signed so far. We call such a labeling
method the sibling-code. Then, we can associate each parent node with
an inter-val [a, b] such that each child�s sibling-code s ∈ [a, b]. There-
fore, two nodes are siblings iff their sibling-codes be-long to the same
interval.

To identify the parent-child relation, we associate each node with
a level number. The root has the level number 0. All the children of the
root have the level number 1, and so on. Then, if node x is the ancestor
of y and at the same time l(x) = l(y) - 1 (l(x) stands for the level number
of x), then we know that x is the parent of y.

GENERALIZATION
Now we discuss how to treat the recursion w.r.t. a general struc-

ture: a DAG or a graph containing cycles. First, we ad-dress the prob-
lem with DAGs in 4.1. Then, the cyclic graphs will be discussed in 4.2.

Recursion w.r.t. DAGs
We want to apply the technique discussed above to a DAG. To

this end, we divide a DAG into a set of spanning trees (forests). This
method shares the flavor of Teuhola�s [Te96].

But our decomposition strategy is quite different from [Te96]. In
[Te96], a DAG is decomposed into a set of spanning trees which are
separated from each other, i.e., there are no com-mon nodes between
any two spanning trees while in ours two spanning trees (forests) may
have common nodes. The advan-tage of our method can be seen in the
following discussion.

In the following, we concentrate on only on single-root graphs
for simplicity. But the proposed method can be easily extended to
normal cases. We construct a sequence of span-ning trees (forests)
w.r.t. a DAG G with the single-root r, which covers all the edges of G.
First, we extract the spanning tree (forest) from G, which contains all
nodes of G, denoted Tmax(G). Then, we remove Tmax(G) and subsequently
all iso-lated nodes from G, getting another graph G1. Next, we con-struct
a spanning tree (forest) w.r.t. G1: Tmax(G1). We repeat this process until
the remaining graph becomes empty. It is therefore easy to see that all
Tmax(Gi)�s can be obtained in O(k(n + e)) time by repeating graph search
procedure k times, where n and e represent the number of the nodes and
the edg-es of the DAG, respectively. However, this time complexity
can be reduced to O(n + e) by implementing an algorithm which com-
putes such a sequence in a single-scan.

For a DAG G = (V, E), we represent the sequence of spanning trees
(forests) Tmax(Gi) (i = 0, 1, ..., m; G0 = G) as follows:

Tmax(G0) = (V1, E1),
Tmax(G1) = (V2, E2),
Tmax(G2) = (V3, E3),
� ...
Tmax(Gm) = (Vm+1, Em+1),
where V1 stands for the set of nodes in G, Vi (i = 2, ..., m+1) for the

set of nodes in G - E1 ∪ E2 ∪ ... ∪ Ei-1, and m is the largest in-degree of
the nodes of G.

In the following, we give a linear time algorithm to compute all
Tmax(Gi)�s.

The idea is to construct all E1, E2, ... Em in a single scan. Dur-ing
the graph search we compute, for each edge e being scanned, the i
satisfying e  Ei. Such i can be defined to be the smallest such that if e is
put in Ei, the condition: each node in any Ej (j = 1, ..., i) is visited only
once, is not violated, where Ei denotes the edge sets constructed so far.
In the algo-rithm, we always chose an unvisited edge e that is adjacent
to edge e� ∈ Ei with the largest i. In the algorithm, we associate each
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node v with a label l(v): l(v) = i indicates that v has been reached by an
edge of the forest Tmax(Gi-1) = (Vi, Ei). In the following algorithm, we
assume that the nodes are numbered in terms of the depth-first search.
Algorithm find­forest
input: G = (V, E)
output: E1 , E2, ..., Em

begin
E1 := E2 := ... := Em := ∅;
Mark all nodes v ∈ V and all edges e∈ E �unvisited�;
l(v) := 0 for all v ∈ V;
while there exist �unvisited� nodes do

begin
choose an �unvisited� node v ∈ V with the
largest l and the smallest �depth-first� number ;
for each �unvisited� edge e incident to v do

begin
Let u be the other end node of e (≠ v);

* El(u)+1 := El(u)+1 ∪ {e};
** l(u) := l(u) + 1;
*** if l(v) < l(u) then l(v) := l(u) -1;

Mark e �visited�;
end

Mark x �visited�;
end

end

For example, by applying the above algorithm to the graph shown
in Fig. 2(a), we will obtain the edges of three span-ning trees shown in
Fig. 2(b). In Appendix, we will trace the execution of the algorithm
against Fig. 2(a) for a better un-derstanding.

In the above algorithm, each edge is visited exactly once. There-
fore, the time complexity of the algorithm is bounded by O(n + e). In
the following, we prove a theorem to estab-lish the correctness of the
algorithm.
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Figure 2: DAG and its node­disjunct maxiaml

Proposition 2. Applying Algorithm �find­forest� to a DAG G, a
sequence of spanning trees (forests) w.r.t. G will be found, which covers
all of its edges.

Proof. First, we note that by the algorithm each edge will be
visited exactly once and put in some Ei. Therefore, the union of all Ei�s
will contains all edges of G. To prove the theorem, we need now to
specify that in every Ei, except the root nodes of Ei, each node can be
reached along only one path, or say, visited exactly one time w.r.t. Ei.

Pay attention to the lines marked with * and **. If a node u is
visited several times along different edges, such edges will be put in
differ-ent Ei�s. Therefore, in each Ei, u can be visited only once. By
the line marked with ***, if an edge (v, u) is put in some Ei, then an
unvisited edge reaching v afterwards will be put in Ei or Ei+1. If in Ei there
is no edge reach v up to now (in this case, l(v) < l(u) holds), the label of
v will be changed to i - 1. Then, if afterwards an unvisited edge reaches
v, it will be put in Ei. Otherwise, l(v) = l(u) and there must already be an

edge in Ei reaching v. Thus, if afterwards an unvisited edge reaches v, it
will be put in Ei+1. In this way, in Ei, v can be visited only once, which
completes the theorem proof.

Now we can label each Ei in the same way as discussed in the
previous section. (A forest can be regarded as a tree with a virtual root
which has a virtual edge linking each tree root of the forest.) In
addition, we notice that a node may appear in several Ei�s. For ex-
ample, in Fig. 2(b) node 6 appears in E1 and E2 while node 4 occurs in all
the three spanning trees. Then, after labeling each Ei, each node v will

get a pair se-quence of the form: (
1i

pre , 
1i

post ). (
2i

pre , 
2i

post ).

� .(
jipre , 

jipost ), where for each ik ∈{1, ..., m} (m is the in-degree

of v.(, ) stands for the preorder number and pos-torder number of v w.r.t
. In the subsequent discussion, we also say that a label belongs to some
Ei, referring to the fact that this pair is calculated in terms of Ei. In
terms of such a data structure, we give a naive algorithm below.
∆global := ∅;
∆local := ∅;
S := {x}; (* The descendants of x will be searched. *)
function recursion(S)
begin

for each x ∈ S do {
let p1.p2. ... pm be the pair sequence associated with x;
for i = m to 1 do {

* let ∆ be the set of descendants of x w.r.t. Ei

(evaluated using pi);
** for each y ∈ ∆, remove the pair belonging to Ei from the pair

sequence associated with y;
∆local := ∆local ∪ ∆;}}

∆local := ∆local ­ ∆global;
∆global := ∆global ∪ ∆local;
call recursion(∆local);

 end
In the above algorithm, pay attention to the line marked with *,

by which all the descendants of x will be evaluated in Ei, using pi. Since
these descendants may appear also in other Ej�s, they should be used
for the further computation. But the pair belonging to Ei has to be
eliminated from the pair se-quences associated with these nodes to
avoid the repeated ac-cess to the edges in Ei, which is done by the line
marked with **.

The above algorithm suffers, however, from redundancy as dis-
cussed below.

The graph shown in Fig. 3(a) can be decomposed into two span-
ning trees as shown in Fig. 3(b). Applying recursion(7) to this graph,
the descendant set evaluated in the first for loop is {4, 5}. In the
second for loop, the descendants of node 4 and 5 will be computed,
which are s1 = {5, 6} (the descen-dants of node 4) and s2 = {6} (the

 
1 

2 7 

3 4 

5 

1 

2 7 

3 4 

5 

7 

4 

5 

6 6 
(a) (b) 

Figure 3: Illustration of redundancy of recursion(S)
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descendants of node 5), re-spectively. Obviously, s2 is completely cov-
ered by s1. Therefore, the work of evaluating s2 can be saved. To this
end, we associate each Ei with a bit string of size n, denoted Bi. If some
node j is a descendant evaluated w.r.t. Ei, the jth bit of Bi will be set to
1, i.e., Bi[j] = 1. If the descendants of a node k w.r.t. Ei will be evaluated,
we first check Bi[k] to see wheth-er it is equal to 1. If so, the corre-
sponding computation will not be made. Another problem is that if s2
is evaluated first, the redundant work can not be avoided even though
the checking is performed. Thus, the order of the nodes whose descen-
dants will be evaluated is important. For an Ei the nodes with smaller
preorder numbers will be treated earlier than those with a larger preorder
number. It is because a node with a larger preorder number may be a
descendant of a node with a smaller one, but not vice versa. In order to
sort the nodes in this way, we have to change the control method of
the above algorithm. Assume that each node v is associated with a pair
sequence of the form: p1.p2. ... pm, where m is the largest in-degree of
the graph. If v does not appear in Ei, pi will be of the form: (_, _) and
will be ignored by sorting. The nodes, whose descendants w.r.t. Ei are
going to be evaluated, will be first sorted in terms of pi. Then, the
descendants of these nodes w.r.t. Ei will be computed. In a second loop,
the nodes will be sorted again in terms of pi-1. This process re-peats
until all pi�s are handled. Below is the corresponding al-gorithm with
the checking mechanism used.
∆global := ∅;
∆local := ∅;
S := {x};  (* The descendants of x will be searched. *)
let p1.p2. ... pm be the pair sequence associated with each node of the
graph;
for i = 1 to m do Bi = 0;
function refined-recursion(S)
begin

for i = m to 1 do {
sort S in terms of pi�s;
let the sorted S be {v1, ..., vk};

for j = 1 to k do {

if Bi[vj] = 0 then ∆ := the set of descendants of vj

                    w.r.t. Ei (evaluated using pi);
for each vj ∈ ∆ do {Bi[vj] := 1}
∆local := ∆local ∪ ∆;}}

∆local := ∆local ­ ∆global;
∆global := ∆global ∪ ∆local;
call refined­recursion(∆local);

end
Note that we take only O(1) time to check a bit in the bit string.

For each newly evaluated node set (each time stored in ∆local in the
above algorithm), sorting operations will be per-formed. But each
node v in ∆local can take part in the sorting only d times, where d
represents the in-degree of v, since for each node v only d pairs in the
pair sequence associated with it is not of the form: (_, _). Assume that
each time only ∆ij from ∆i (= ∆local) participates in the sorting. Then,
the total cost for sorting is

||log| ij
i j

ij| ∆⋅∆∑∑  ≤ e ⋅ logn

Since each edge is visited at most once, the traversal of the graph
needs only O(e) time. Therefore, the time complexity of the algo-
rithm is bounded by O(e×logn), a little bit more than the time required
by an algorithm using an adjacency list. But this algorithm is quite
suitable for a relational environment. Furthermore, we can store the
data in a special way to support the sorting operation so that no extra
time is required. For ex-ample, we can define two simple relations to
accommodate the graph and its pair sequences as follows:

node(Node_id, Node_rest),
spanning_forest(E_num, label_pair, Node_id).

The first relation stores all the nodes of the graph. The second
relation stores all the spanning trees (forests), in which �E_num� is
for the identifiers of the spanning trees (forests). If for each of them
the label pairs are stored in the increasing order of their preorder
numbers, the sorting operations in the algorithm refined­recursion()
can be removed. Then, the time complexity of the algorithm can be
reduced to O(e). This can be done as follows. Whenever some Ei is
considered during the execution, we take the tuples with E_num = i
from the re-lation �spanning_forest�. Then, we scan these tuples and
check, for each tuple, to see whether Bi[node_id] = 1. If it is the case,
the corresponding label pair will be put in a list (a temporary data
structure) sequentially. Obviously, the list constructed in this way is
sorted into the increasing order of the preorder numbers w.r.t. Ei.

Recursion w.r.t. Cyclic Graphs
Based on the method discussed in the previous section, we can

easily develop an algorithm to compute recursion for cy-clic graphs.
We can use Tarjan�s algorithm for identifying strong connected com-
ponents (SCC) to find cycles of a cyclic graph [Ta72] (which needs
only O(n + e) time). Then, we think of each SCC as a single node (i.e.,
condense each SCC to a node). The resulting graph is a DAG. Applying
the algo-rithm find_forest( ) to this DAG, we will get a set of forests.
For each forest, we can associate each node with a pair as above.
Obviously, all nodes in an SCC will be assigned the same pair (or the
same pair sequence). For this reason, the method for evaluating the
recursion at some node x should be changed. For example, if a graph
becomes a tree after con-densing each SCC to a node, the select-from-
where state-ments like those given in Section 3 (against this graph)
can be modified as follows. The first query is quite the same as that
shown in Section 3:

SELECT label_pair
FROM Node
WHERE Node_id = x
But the second is changed slightly:
SELECT *
FROM Node
WHERE label_pair.preorder ³ y.preorder

and label_pair.postorder £ y.pos-torder
By the second query, the nodes in the same SCC as x will be

regarded as the descendants of x.
For general cases, the method for checking ancestor-descen-dant

relationship applies. No extra complexity is caused. Since Tarjan�s
algorithm runs in O(n + e) time, computing re-cursion for a cyclic
graph needs only O(e) time.

CONCLUSION
In this paper, a new labeling technique has been proposed. Using

this technique, the recursion w.r.t. a tree hierarchy can be evaluated
very efficiently. In addition, we have introduced a new algorithm for
computing spanning trees (forests), which requires only linear time.
Together with the labeling technique, this method enable us to develop
an efficient algo-rithm to compute recursion for directed graphs in
O(e) time, where e represent the number of the edges of the DAG.
More importantly, this method is especially suitable for relational
databases and much better than the existing methods.

REFERENCES
ACCM97 S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte,

J. Simon, �Quering documents in ob-ject databases,� Int. J. Digital
Libraries, Vol. 1, No. 1, April 1997, pp. 5 - 19.

ADJ90 R. Agrawal, S. Dar, H.V. Jagadish, �Direct transi-tive closure
algorithms: Design and performance evaluation,� ACM Trans. Data­
base Syst. 15, 3 (Sept. 1990), pp. 427 - 458.

AJ89 R. Agrawal and H.V. Jagadish, �Materialization and Incremental
Update of Path Information,� in: Proc. 5th Int. Conf. Data Engi­
neering, Los Ange-les, 1989, pp. 374 - 383.



360  Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

AJ90 R. Agarawal and H.V. Jagadish, �Hybrid transitive closure algo-
rithms,� In Proc. of the 16th Int. VLDB Conf., Brisbane, Australia,
Aug. 1990, pp. 326 - 334.

BKKG88 J. Banerjee, W. Kim, S. Kim and J.F. Garza, �Clus-tering a DAG
for CAD Databases,� IEEE Trans. on  Knowledge and Data Engi­
neering, Vol. 14, No. 11, Nov. 1988, pp. 1684 - 1699.

BR86 F. bancihon and R. Ramakrishnan, �An Amateurs Introduction to
Recursive Query Processing Strat-egies,� in: Proc. ACM SIGMOD
Conf., Washing-ton D.C., 1986, pp. 16 - 52.

Ca95 M. Carey et al., �An Incremental Join Attachment for Starburst,�
in: Proc. 16th VLDB Conf., Bris-bane, Australia, 1990, pp. 662 -
673.

CA98 Y. Chen, K. Aberer, �Layered Index Structures in Document
Database Systems,� Proc. 7th Int. Con­ference on Information and
Knowledge Manage­ment (CIKM), Bethesda, MD, USA: ACM, 1998,
pp. 406 - 413.

CA99 Y. Chen and K. Aberer, �Combining Pat-Trees and Signature Files
for Query Evaluation in Document Databases,� in: Proc. of 10th Int.
DEXA Conf. on Database and Expert Systems Application, Flo-rence,
Italy: Springer Verlag, Sept. 1999. pp. 473 - 484.

CS92 R.G.G. Cattell and J. Skeen, �Object Operations Benchmark,�
ACM Trans. Database Systems, Vol. 17, no. 1, pp. 1 -31, 1992.

DR94 S. Dar and R. Ramarkrishnan, �A Performance Study of Transi-
tive Closure Algorithm,� in Proc. of SIGMOD Int. Conf., Minneapo-
lis, Minnesota, USA, 1994, pp. 454 - 465.

IRW93 Y.E. Ioannidis, R. Ramakrishnan and L. Winger, �Tansitive
Closure Algorithms Based on Depth- First Search,� ACM Trans. Da­
tabase Syst., Vol. 18. No. 3, 1993, pp. 512 - 576.

Ja90 H.V. Jagadish, �A Compression Technique to Ma-terilize Transi-
tive Closure,� ACM Trans. Database Systems, Vol. 15, No. 4, 1990,
pp. 558 - 598.

Kn73 D.E. Knuth, The Art of Computer Programming: Sorting and
Searching, Addison-Wesley Pub. London, 1973.

Me84 K. Mehlhorn, �Graph Algorithms and NP­Com­pleteness: Data
Structure and Algorithm 2� Springer-Verlag, Berlin, 1984.

MMM97 A.O. Mendelzon, G.A. Mihaila, T. Milo, �Querying the World
Wide Web,� Int. J. Digital Libraries, Vol. 1, No. 1, April 1997, pp.
54 - 67.

Ta72 R. Tarjan: Depth-first Search and Linear Graph Algorithms, SIAM
J. Compt. Vol. 1. No. 2. June 1972, pp. 146 -140.

Te96 J. Teuhola, �Path Signatures: A Way to Speed up Recursion in
Relational Databases,� IEEE Trans. on Knowledge and Data Engi­
neering, Vol. 8, No. 3, June 1996, pp. 446 - 454.

VB86 P. Valduriez and H. Boral, �Evaluation of Recur-sive Queries
Using Join Indices,� in: Proc. 1st Workshop on Expert Database
Systems, Charles-ton, S.C., 1986, pp. 197 - 208.

APPENDIX
In this Appendix, we trace the algorithm find­spanning­tree against

the tree shown in Fig. 2(a).
See Fig. 4. At the beginning, every r(v) is set to 0. After the first

loop, the l-value of node 1 remains 0. But the l-values of 2, 6, and 7 are
changed to 1. Moreover, node 1, and edge (1, 2), (1, 6) and (1, 7) are
marked with �v� to indicate that have been visited. In addition, part of
E1 has been generated. The rest steps are listed in Fig. 5, 6, 7 and 8.
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Figure 4: The first execution step of find­node­disjunct­forest
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Figure 5: The second and third execution step of find­node­disjunct­
forest
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Figure 6: The fourth and fifth execution step of find­node­disjunct­
forest
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Figure 7: The fourth and fifth execution step of find­node­disjunct­
forest
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Figure 8: The sixth and seventh execution step of find­node­
disjunct­forest
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