
308 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

FOOM�An Integrated Methodology for Analysis
and Design of Information Systems

Judith Kabeli and Peretz Shoval
Department of Information Systems Engineering, Ben-Gurion University, Israel

Tel: +972-8-6477003, Fax: +972-8-6477527, {Kabeli, Shoval}@bgumail.bgu.ac.il
ABSTRACT

FOOM is a Functional and Object-Oriented Methodology for analysis and design of information systems, which combines the two
essential software-engineering paradigms: the functional- (or process-) oriented approach and the object-oriented (OO) approach. In
FOOM, system analysis includes both functional and data modeling activities, thereby producing both a functional model and a data
model. These activities can be performed either by starting with functional analysis and continuing with data modeling, or vise versa.
FOOM products of the analysis phase include: an initial object schema, which can be created from the user requirements and a hierarchy
of OO-DFDs (object-oriented data flow diagrams). System design is performed according to the OO approach. The products of the
design phase include: a) a complete object schema, consisting of the classes and their relationships, attributes, and method interfaces;
b) object classes for the menus, forms and reports; and c) a behavior schema, which consists of detailed descriptions of the methods and
the application transactions, expressed in pseudo-code and message diagrams. The seamless transition from analysis to design is
attributed to ADISSA methodology, which facilitates the design of the menus, forms and reports classes, and the system behavior schema,
from DFDs and the application transactions.

INTRODUCTION
Many paradigms for system analysis and design have been pro-

posed over the years. Early approaches have advocated the functional
approach (DeMarco, 1978; Yourdon & Constantine, 1979). The de-
velopment of object-oriented (OO) programming languages gave rise
to a new approach, which maintains that in order to develop informa-
tion systems in such languages, it is recommended to perform object
oriented analysis and design. Many OO methodologies were developed
(e.g. Booch, 1991; Coad & Yourdon, 1990; Coad & Yourdon, 1991;
Jacobson, 1992; Martin & Odell, 1992; Rumbaugh, Blaha, Premerlani,
Eddy & Lorensen, 1991; Shlaer & Mellor, 1988; Shlaer & Mellor,
1992; Wirfs-Brock, 1990), and the area is still evolving. The multi-
plicity of diagram types in the OO approach has been a major motiva-
tion for developing the Unified Modeling Language (UML) (see, for
example, Boosh, Rumbaugh & Jacobson, 1999, Clee & Tepfenhart,
19971; Larman, 1998; Maciaszek, 2001; UML-Rose, 1998). UML
was developed in order to produce a standard (�unified�) modeling
language. It consists of several types of diagrams with well-defined
semantics and syntax, which enable presenting a system from different
point of views.

Information systems development is a multi-phase process in
which the analysis and design are of primary importance. Therefore it
is vital to examine which approaches and methods are appropriate to
perform each of these phases. On the one hand, those who adopt the
OO approach claim that using data abstraction at the analysis phase,
producing a model of reality by means of classes, is preferable to
producing a functional model, because the real world consists of ob-
jects. However, as far as we know no such study has shown that the OO
approach is more effective than the functional/data approach in the
development of business-oriented information systems.

OO methodologies tend to neglect the functionality aspect of
system analysis, and do not clearly show how to integrate the systems
functions, or transactions, with the object schema. One sometimes
gets the impression that the functionality of the system is expressed
by means of methods that are encapsulated within objects, thus disre-
garding functional requirements that cannot be met by simple meth-
ods. On contrast, based on vast experience in performing functional
analyses with DFDs, we have met with no problems as a means to
express the functionality of the system; the only problem was how to
continue from them to the following phases of development.

In our opinion, since process and object are both fundamental
building blocks of reality, the analysis phase must cover both the
functional and the data aspects. The functional approach, using DFDs,

is suitable for describing the functionality of the system, while ERD or
OO-schemas are suitable for modeling the data structure. Since the OO
approach is the one most appropriate for performing the design phase,
we suggest performing data modeling by creating an initial OO-schema.
It seems more effective to produce an initial OO-schema already at
the analysis phase, and then to use it as input to the design phase. (The
term initial OO-schema will be clarified later on).

For the design phase it is crucial to provide a smooth and seamless
transition to system implementation. Since there is an agreement on
the advantages of OO programming, it is also desirable to design the
system with methods and tools that belong to the OO family. There-
fore, we conclude that in order to perform each of those development
phases with its most appropriate method, there is a need to integrate
the functional- and object-oriented approaches.

Dori�s Object-Process Methodology - OPM (Dori, 1996; Dori,
2001), indeed integrates the two approaches. It utilizes a single graphic
tool, Object-Process Diagram (OPD), at all development phases. How-
ever, since OPD defines a new notation that combines DFD and OO
diagrams, it includes a great many symbols and rules. It seems to us that
such diagrams are not so easy to construct and comprehend for large-
scale systems, and that reality has to be modeled by means of simple
notations, which are easy to learn, comprehend and utilize. A single
hybrid notation, like OPM, must be very rich in order to elicit all those
points of view, thus leading to a complex, perhaps distorted model of
reality. On the other hand, multiplicity of models and corresponding
diagramming tools, as found in UML, may also be too complicated.
Too many diagram types (even standard) can hamper coherent under-
standing and lead to the production of erroneous models and systems.

We are looking for an optimal way to integrate the process and
object approaches. Since users express their information needs in a
functional and data manner, and not by means of an object structure
and behavior, an appropriate (natural) method to carry out the analy-
sis task is by functional/data analysis. On the other hand, the design
should be made through the OO approach to facilitate the transition of
the design to OO programming, which has proved itself to be a better
approach to implement software. The integration of the two ap-
proaches is made possible because it applies principles and techniques
taken from the ADISSA methodology, especially transactions design.
A transaction is a process that supports a user who performs a busi-
ness function, and is triggered as a result of an event. A transaction in
a DFD consists of elementary functions that are chained trough data-
flows, and of data-stores and external-entities that are connected to
those functions. The transactions design enables the transition from

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4206
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 309

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

functional analysis DFDs to an OO model that consists of object and
behavior schemas (More details can be found in the ADISSA refer-
ences, Shoval 1988, Shoval 1990, and in Shoval, 1991).

OUTLINE OF FOOM METHODOLOGY
We represent a briefly description of FOOM, along with an ex-

ample � the IFIP Conference (Mathiasssen and el., 2000). A more
detailed description of FOOM can be found in (Shoval and Kabeli,
2001). Parts of the analysis specifications of the IFIP Conference
example are present below, in Figures 1-3. We show the initial OO
schema (Figure 1), the root OO-DFD-0 (Figure 2), and OO-DFD-1
(Figure 3), which describes the Program Management function.

The Analysis Phase
The analysis phase consists of two main activities: data modeling

and functional modeling. They can be performed in any order. The
products of this stage are a data model, in the form of an initial OO-
schema, and a functional model, in the form of hierarchical OO-DFDs
(supported by a data-dictionary).

The initial OO-schema consists of �data� classes (also termed
�entity� classes), namely classes that are derived from the application
requirements and contain �real world� data. (Other classes will be
added at the design stage.) Each class includes attributes of various
types (e.g. atomic, multi-valued and tupels of attributes, keys, sets, and
reference attributes). Association types between classes include �regu-
lar� (namely 1:1, 1:N and M:N) relationships, with proper cardinali-
ties, generalization-specialization (is-a, or inheritance) links between

Title
Set Keywords
Paper text
Status (Sub, Ass, Rev, Rej, Acc)
Set Reviewers{[Reviewer], Status (Ass,
Rev), Deadline, Review}
Set Authors [Author]

ID

N
am

e
A

ddress
Phone#
Em

ail

Person

Set Papers{[Paper], Status(Ass,
Rev), Deadline, Review}
Set Skills
Set Interests

Reviewer

Regular Participant

Set LectureAt [Lecturer]

Speaker
Set Participate [Panel]

Panelist
Set Control [Session]

Chair

Papers Presentation

Name
Topic
Date
Hour {Start, End}
Hall Name
ControlledBy [Chair]
Set Facilities
BelongTo [Program]

Session

{} Tuple of attributes
[] Reference attribute
Key attribute
Default value

Is a

Is a

Controlling

Participating

Consist
of

W
riting

Reviewing

Presenting

Lecturing

Is a

Participate In

(0,m) (1,n)

(0,m)

(0,m)

(1,m)

(1,1) (1,n)

(0,m)

(0,m)

(1,1)

(1,2)

(0,m)

(2,4)

(1,n)

(1,m)

(1,1)

Sub=Submit, Sug=Suggest, Ass=Assign, Rev=Review,
Acc=Accept, Rej=Reject

Set Write [Paper]
Set PresentAt [Accepted Paper]

Author

Set Participants [Panelist]
Description

Panel

PresentedBy [Speaker]
Abstract

Lecture

Status (Sug, Ass, Acc, Rej)
Set Skills
Set Interests
AssDate

Performing
Participant

Paper

Name
Location
Time {start date, end date}
PrelimDescription
Set SocActivity [Social Activity]
Set Session [Session]
Set Participant [Person]
Call for Papers
Call for Participants and Roles
Final Program

Program

Time Present {start, end}
Set PresentedBy [Author]
Present in [Papers Presentation]

(1,n) (1,1)
Set Present [Accepted Paper]

Accepted Paper

Presented At

Is a

Figure 1: Initial OO-Schema of IFIP Conference

super and subclasses, and aggregation-participation (is-part-of) links.
Note that in our model, relationships are signified not only by links
between respective classes, but also by reference attributes to those
classes. However the initial OO-schema does not include methods;
these will be added at the design phase. An example of the OO-schema
is shown in Figure 1.

The OO-DFDs specify the functional requirements of the sys-
tem. Each OO-DFD consists of general or elementary functions, ex-
ternal entities � mostly user-entities, but also time and real-time enti-
ties, object-classes (instead of the �traditional� data-stores), and the
data flows among them. Examples are shown in Figures 2-3. Note that
a general function is represented as a double circle, meaning that its
sub-functions are described in a separate sub-OO-DFD. Classes within
the OO-DFDs correspond to classes, which exist in the initial OO-
Schema.

In order to determine which of the two alternative orders to
perform the analysis stage, namely start with data modeling or with
functional modeling, we conducted a comparative experiment. Sub-
jects were undergraduate students of Information Systems who studied
FOOM. They were randomly divided into two groups; members in each
group received a literal description of the IFIP Conference system and
were asked to produce the analysis specifications. Subjects in one group
were asked to produce functional model first, and then data model and
subjects in the other group did the opposite.

For each subject we checked the correctness of specifications,
using a grading scheme that was defined. Then we computed the aver-
age grades of the each subject per category, model and overall (namely
the two models combined). Based on that we computed the differences
of the average grades between the groups.

310 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 2: OO-DFD-0�The IFIT Conference

Issues and Trends of IT Management in Contemporary Organizations 311

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 3: OO-DFD-1�Program management

312 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

We found that the order, which starts with data modeling and
continues with functional analysis, provides significantly better speci-
fications. At any rate, the analysis activities must not be carried out in
sequence, as could perhaps be understood from the above discussion.
Rather, they should be performed iteratively. For example, the analyst
can start by creating a partial class diagram, continue by providing a
few OO-DFDs which relate to those classes, return to the first activity
(updating and extending the class diagram), and so on � until the
analyst feels that the two products are complete, consistent and sat-
isfy the user�s requirements.

The Design Phase
Due to space limit, we describe the design activities without show-

ing examples.

Defining Basic Methods
Basic methods of classes are defined according to the initial OO-

schema. We distinguish between two types of basic methods: elemen-
tary methods and relationship/integrity methods. (More methods, for
performing various users� needs, will be added at the next stage).

Elementary methods include a) construct (add) object, b) delete
(drop) object, c) get (find) object, and d) set (change) attributes of
object. Elementary methods actually belong to a general (basic) class,
from which all the classes inherit.

Relationship/integrity methods are derived from structural rela-
tionships between classes. They are intended to perform referential
integrity checks, depending on the relationship types between the
classes and on cardinality constraints on those relationships. For each
relationship, which is also expressed in terms of reference attributes,
the involved classes include appropriate integrity methods, which will
fire whenever an object of a respective class is added, deleted or changed.
Generally, for each relationship between classes we can define an in-
tegrity method for operations of add, delete, connect, disconnect and
reconnect. (For more details on integrity methods see Balaban &
Shoval, 1999). Recall that additional, application-specific methods
will be added in the stage of behavior design - see Section 2.5.

Top-Level Design of the Application Transactions
This stage is performed according to ADISSA methodology, where

the application transactions are derived from DFDs (for more details
see Shoval, 1988). Note that here the transactions include classes
rather than to data-stores.

The products of this stage include transactions diagrams, which
are extracted from the OO-DFDs, top-level descriptions of the trans-
actions, and a new class - �Transactions class�. This virtual class will
not contain objects � only the transaction methods (as will be elabo-
rated in Section 2.5.)

A top-level transaction description is provided in a structured
language (e.g. pseudo-code or flowchart), and it refers to all compo-
nents of the transaction: every data-flow from or to an external entity
is translated to an �Input from...� or �Output to...� line; every data-
flow from or to a class is translated to a �Read from...� or �Write to...�
line; every data flow between two functions translates to a �Move
from... to...� line; and every function in the transaction translates into
an �Execute function..� line. The process logic of the transaction is
expressed by standard structured programming constructs (e.g. if...
then... else...; do-while...) The analyst and the user, who presents the
application requirements, determine the process logic of each transac-
tion. This cannot be deducted �automatically� from the transaction
diagrams alone, because a given diagram can be interpreted in different
ways, and it is up to the user to determine the proper interpretation.

The top-level transaction descriptions will be used in further
stages of design, namely input/output design, and behavior design, to
provide detailed descriptions of the application-specific class methods
(which are in addition to the basic methods), as well as of the applica-
tion programs.

Design of the Interface�The Menus Class
This stage is performed following the ADISSA methodology

(Shoval, 1988, 1990). A menu-tree interface is derived in a semi
algorithmic way from the hierarchy of OO-DFDs. Note the corre-
spondence of the menus and menu items to the respective general
functions and elementary functions in the OO-DFDs. The menu-tree
is translated into a new class � the �Menus class�. The instances
(objects) of the Menus class are the individual menus, and the attribute
values of each object are the menu items. Note that some of the
selections within a given menu may call (trigger) other menu objects,
signified by S (selection) while other selections may trigger transac-
tions, signified by T. Transactions will be implemented as methods of
the Transactions class (as will be detailed later). Hence, at run time, a
user who interacts with the menu of the system actually works with a
certain menu object. He/she may select a menu item that will cause the
presentation of another menu object, or invoke a transaction, which is
a method of the Transactions class.

Design of the Inputs and Outputs�The Forms and Reports Classes
This stage is also performed according to ADISSA methodology

and is based on the input and output lines appearing in each of the
transaction descriptions. Hence, for each �Input from..� line, an input
screen/form will be designed, and for each �Output to..� line an output
screen/report will be designed. Depending on the process logic of each
transaction, some or all of its input or output screens may be com-
bined. Eventually, two new classes are added to the OO-schema: �Forms
class� for the inputs, and �Reports class� for the outputs. Obviously,
the instances (objects) of each of these class types are the input screens
and output screens/reports, respectively. Such classes are usually de-
fined in OO programming languages and can be reused.

Design of the System Behavior
In this stage we have to convert the top-level descriptions of the

transactions into detailed descriptions of the application programs
and application-specific methods. A detailed description of a transac-
tion may consist of procedures, which can be handled as follows: A
certain procedure may be identified as a basic method of some class.
Another procedure may be defined as a new, application-specific method,
to be attached to a proper class. Remaining procedures (which are not
identified as basic methods or defined as specific methods) will become
a Transactions method, which is actually the �main� part of the
transaction�s program. Hence, every transaction is represented as a
Transactions method of the Transaction class; which, once triggered
by the user via proper menus selections, may call (namely, send mes-
sages to) other methods of respective classes � depending on the
process logic of the transaction.

We can categorize the application transactions according to their
complexity � depending on how many classes and methods they refer
to. For example, a simple transaction (e.g. one that finds a certain
object and displays its state, or that updates attributes of an object)
may be implemented as a small procedure (namely a Transactions
method) that simply sends a message to a basic method of a certain
class. A complex transaction (e.g. one that finds and displays objects
that belong to different classes, or that updates objects that belong to
different classes or that both retrieve and update various objects) may
be implemented as a more complex procedure that sends messages to
basic methods and specific methods of various classes. Generally, an
application may consist of many transactions, with different levels of
complexity. Note that at run-time, when a user wants to �run� any
transaction, he/she actually approaches the Menus class and makes
proper item selections within the menu objects, until a menu item that
actually fires the desired Transactions method is selected. From here,
the execution of a transaction depends on the process logic of the
Transactions method and the other methods it calls.

The detailed description of a transaction is expressed in two
complementing forms: Pseudo-code and Message Diagram. A pseudo-

Issues and Trends of IT Management in Contemporary Organizations 313

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

code is a structured description that details the process logic of the
Transactions method as well as any other class method. The transition
from a top-level description of a transaction to its detailed pseudo-
code description is done as follows: Every �Input from...� and �Output
to...� line in the top-level description is translated to a message calling
an appropriate method of the Forms/Reports class. Every �Read
from...� or �Write to...� line is translated to a message calling a basic
method (e.g. �Get�, �Const�, �Set�, and �Del�) of the appropriate
class. Every �Execute-Function...� line is translated to messages call-
ing one or more basic methods of certain classes, or to new, specific
methods that will be attached to proper classes, or to procedures that
remain as part of the Transactions method

A Message Diagram shows the classes, methods and messages
included in a transaction, in the order of their execution. A message
diagram is actually a partial class diagram that shows only the classes
involved in the transaction (including Data, Menus, Forms, Reports
and Transactions classes), the method names (and parameters) in-
cluded in that transaction, and message links from calling to called
classes. Message diagrams supplement the pseudo-code descriptions of
transactions.

To summarize, the products of the design phase are: a) a com-
plete class diagram, including Data, Menus, Forms, Reports and Trans-
actions classes, each with various attribute types and method names
(and parameters), and various associations among the classes; b) de-
tailed menu objects of the Menus class, each menu listing its items
(selections); c) detailed form and report objects of the Forms and
Reports classes, each detailing its titles and data fields; d) detailed
transactions descriptions in pseudo-code; e) message diagrams at least
for non-trivial transactions.

System Implementation with OO Programming Software
At the implementation stage, the programmers will use the above

design products to create the software with any common OO program-
ming language, such as C++ or Java. (More details on this stage are
beyond the scope of this paper.)

SUMMARY
The advantages of FOOM presented in this paper are: System

analysis (i.e., specification of user requirements) is performed in func-
tional terms via OO-DFDs - a natural way for users to express their
information needs, and in data terms via an initial OO-schema, or an
ERD which is easily translated into an initial OO-schema. System
design follows the analysis and uses its products. The OO-schema is
augmented with a Menus class which is derived from the menu-tree
that was designed earlier from the OO-DFDs. Inputs and Outputs classes
are also derived from the input forms and the outputs of the system
(earlier products of the design stage). The application programs are
generated from the transaction descriptions, and are attached to the
Transactions class. The Menus class enables the users to access and
trigger any application transaction.

Our further research and development agenda includes: develop-
ment of a set of CASE tools to support the methodology; demonstra-
tion of the methodology in use by means of several real-world case
studies; and evaluation of the methodology by means of experimental
comparisons with other methodologies on various dimensions, e.g.
comprehension of schemas by users, quality (i.e. correctness) of de-
signed schemas, ease of learning the methods, etc. Participants in the
experiments might be students in relevant programs, or professionals
in relevant development organizations.

REFERENCES
Balaban, M. and Shoval, P. (1999). Enhancing the ER Model with Integ-

rity Methods. Journal of Database Management, 10 (4), 14-23.
Booch, G. (1991). Object-Oriented Design With Applications. Benjamin/

Cummings.

Booch, G., Rumbaugh, J. & Jacobson, I. (1999). The Unified Modeling
Language User Guide. Addison-Wesley.

Clee, R. & Tepfenhart, W. (1997). UML and C++ A practical guide to
Object-Oriented development. Prentice Hall.

Coad, P. & Yourdon, E. (1990). Object-Oriented Analysis. Prentice
Hall, Englewood Cliffs, NJ.

Coad, P. & Yourdon, E. (1991). Object-Oriented Design. Prentice Hall,
Englewood Cliffs, NJ.

DeMarco, T. (1978). Structured Analysis and System Specification.
Yourdon Press, NY.

Dori, D. (1996). Object-Process Methodology: the analysis phase. Pro-
ceedings of TOOLS USA�96.

Dori, D. (2001). Object-Process Methodology applied to modeling credit
card transactions. Journal of Database Management, 12 (1), 4-14.

Jacobson, I. (1992). Object-Oriented Software Engineering: A Use Case
Driven Approach. ACM Press.

Larman, C. (1998). Applying UML and Patterns- an Introduction to
Object Oriented Analysis and Design.

Maciaszek, L.A. (2001). Requirements Analysis and System Design �
Developing Information Systems with UML. Addison-Wesley.

Martin, J. & Odell, J. (1992). Object-Oriented Analysis & Design. Prentice
Hall, Englewood Cliffs, NJ.

Mathiasssen L., Munk-Madsen A., Axel Nielsen P. and Stage J. (2000),
Object Oriented Analysis and design, Marko Publishing ApS, Aalborg,
Denmark.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W.
(1991). Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, NJ.

Shlaer, S. & Mellor, S. (1988). Object-Oriented Analysis: Modeling the
World in Data. Yourdon Press, Englewood Cliffs, NJ.

Shlaer, S. & Mello,r S. (1992). Object Life Cycles: Modeling the World in
States. Yourdon Press, Englewood Cliffs, NJ.

Shoval, P. (1988). ADISSA: architectural design of information systems
based on structured analysis, Information System, 13 (2), 193-210.

Shoval, P. (1990). Functional design of a menu-tree interface within
structured system development. Int�l Journal of Man-Machine Studies,
33, 537-556.

Shoval, P. (1991). An integrated methodology for functional analysis,
process design and database design, Information Systems, 16 (1), 49-
64.

Shoval, P & Kabeli, J. (2001). FOOM: Functional- and Object-Oriented
Analysis & Design of Information Systems - An Integrated Method-
ology, Journal of Database Management, 12 (1), 15-25.

UML Rose (1998). http://www.rational.com

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/foom-integrated-methodology-

analysis-design/31779

Related Content

Prediction of Major Earthquakes as Rare Events Using RF-Typed Polynomial Neural Networks
Simon Fongand Suash Deb (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 227-238).

www.irma-international.org/chapter/prediction-of-major-earthquakes-as-rare-events-using-rf-typed-polynomial-neural-

networks/112331

Empirical Investigation of Critical Success Factors for Implementing Business Intelligence

Systems in Multiple Engineering Asset Management Organisations
William Yeoh (2009). Information Systems Research Methods, Epistemology, and Applications (pp. 247-

271).

www.irma-international.org/chapter/empirical-investigation-critical-success-factors/23479

The Horizons of Experience: The Limits of Rational Thought upon Irrational Phenomena
Tony Hines (2012). Phenomenology, Organizational Politics, and IT Design: The Social Study of

Information Systems (pp. 252-272).

www.irma-international.org/chapter/horizons-experience-limits-rational-thought/64687

Big Data and Simulations for the Solution of Controversies in Small Businesses
Milena Janakova (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 6907-

6915).

www.irma-international.org/chapter/big-data-and-simulations-for-the-solution-of-controversies-in-small-

businesses/184387

Evaluation of Power Grid Social Risk Early Warning System Based on Deep Learning
Daren Li, Jie Shen, Dali Linand Yangshang Jiang (2023). International Journal of Information Technologies

and Systems Approach (pp. 1-12).

www.irma-international.org/article/evaluation-of-power-grid-social-risk-early-warning-system-based-on-deep-

learning/326933

http://www.igi-global.com/proceeding-paper/foom-integrated-methodology-analysis-design/31779
http://www.igi-global.com/proceeding-paper/foom-integrated-methodology-analysis-design/31779
http://www.irma-international.org/chapter/prediction-of-major-earthquakes-as-rare-events-using-rf-typed-polynomial-neural-networks/112331
http://www.irma-international.org/chapter/prediction-of-major-earthquakes-as-rare-events-using-rf-typed-polynomial-neural-networks/112331
http://www.irma-international.org/chapter/empirical-investigation-critical-success-factors/23479
http://www.irma-international.org/chapter/horizons-experience-limits-rational-thought/64687
http://www.irma-international.org/chapter/big-data-and-simulations-for-the-solution-of-controversies-in-small-businesses/184387
http://www.irma-international.org/chapter/big-data-and-simulations-for-the-solution-of-controversies-in-small-businesses/184387
http://www.irma-international.org/article/evaluation-of-power-grid-social-risk-early-warning-system-based-on-deep-learning/326933
http://www.irma-international.org/article/evaluation-of-power-grid-social-risk-early-warning-system-based-on-deep-learning/326933

