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INTRODUCTION

Information Cascade in network theory is a behavioral phenomenon by which every node arrives at a 
decision (adopt or reject a particular thing) under the influence of the decision taken by its neighbor 
nodes (Easley & Kleinberg, 2010). The decision could be with regards to anything like adopting a new 
technology, supporting a particular political party or leader, choosing a lawn maintenance company, 
eating in a restaurant, etc. Given an initial set of nodes (called the initial adopters), the phenomena of 
information cascade (Easley & Kleinberg, 2010) goes through a series of iterations in each of which at 
least one node (that has not yet taken a decision) takes the decision under the influence of the decision 
taken by its neighbor nodes. The iterations stop when all the nodes have taken a decision or when no 
new node (i.e., no node other than those who had decided in the previous iterations) takes a decision in 
an iteration.

We refer to the information cascade as a complete information cascade (Easley & Kleinberg, 2010) if 
all the nodes arrive at a unanimous decision (for example: all nodes in a social network decide to support 
a particular political party in an upcoming election). For complete information cascade to happen, nodes 
(even if they have their own opinion) are expected to get influenced by the decision of their neighbor 
nodes so that the decision is eventually unanimous when the iterations stop. We assume a node will be 
in a position to take the unanimous decision when at least a threshold fraction of its neighbor nodes 
have taken/adopted the same decision (Easley & Kleinberg, 2010). For a given set of initial adopters, 
the maximum value for such a threshold fraction of adopted neighbor nodes in every neighborhood that 
can eventually enforce a unanimous decision for the entire network is called the cascade capacity of the 
network (Easley & Kleinberg, 2010).

The current approach (Easley & Kleinberg, 2010) used to determine the cascade capacity of a net-
work is to first determine the clusters of the network and then determine their densities. The density of 
a cluster is the minimum of the intra cluster density (fraction of the incident edges to nodes within the 
same cluster) of the bridge nodes of the cluster (nodes that have one or more edges to nodes in other 
clusters). Information cascade can penetrate to a cluster and be complete only if the threshold fraction 
of adopted neighbor nodes (needed for adopting a unanimous decision) is less than or equal to 1 - the 
cluster density (Easley & Kleinberg, 2010). The cascade capacity of a network is the minimum of such 
threshold fractions of adopted neighbor nodes needed for a unanimous decision (Easley & Kleinberg, 
2010). A primary weakness with the above approach is that it does not consider the nodes chosen as 
initial adopters to kick start information cascade while determining the cascade capacity of the network 
(also reported by Chesney, 2017). We claim that the above approach only gives a lower bound for the 
cascade capacity of the network and the cascade capacity of the network could be indeed larger if the 
initial adopters are also considered. Moreover, the above approach is time consuming as it first requires 
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to identify the clusters of a network and then identify the bridge nodes per cluster as well as determine 
their intra cluster density.

Our hypothesis for this research is that the cascade capacity of a network depends on the number and 
topological positions of the nodes chosen as initial adopters. To validate our hypothesis, we propose a 
binary search algorithm to determine the largest possible cascade capacity of a network for a given set of 
initial adopters. The binary search algorithm is briefly explained here: The search space (range of pos-
sible values for the threshold fraction of adopted neighbors for a unanimous decision) of the algorithm 
ranges from 0 (initial left index) to 1 (initial right index). We maintain an invariant that the information 
cascade will be complete if the left index is used as the threshold fraction of adopted neighbors and 
that the information cascade will not be complete if the right index is used as the threshold fraction of 
adopted neighbors. In each iteration, we find the middle index (average of the left and right index) and 
check if the information cascade can be complete when the middle index is used as the threshold frac-
tion of adopted neighbors: if the information cascade is complete, we move the left index to the right 
and set the current value of the middle index to be the latest value of the left index; otherwise, we move 
the right index to the left and set the current value of the middle index to be the latest value of the right 
index. We proceed as long as the difference between the latest values of the left index and right index 
stays greater than or equal to a termination threshold (ε). Once the difference between the left index 
and right index becomes less than the termination threshold, we stop the algorithm and return the latest 
value of the left index as the largest possible cascade capacity of the network for the given set of initial 
adopters. The number of iterations needed by the binary search algorithm is log2(1/ε).

Centrality metrics quantify the topological importance of the nodes in a network and are typically 
neighborhood-based or shortest path-based (Newman, 2010). We consider the neighborhood-based de-
gree (DEG) and eigenvector (EVC) centrality metrics and the shortest path-based betweenness (BWC) 
and closeness (CLC) centrality metrics for our analysis. The degree centrality (Newman, 2010) of a 
node is the number of neighbors of the node. The eigenvector centrality (Bonacich, 1987) of a node is a 
measure of the degree of the node as well as the degrees of the neighbors of the node. The betweenness 
centrality (Freeman, 1977) of a node is a measure of the fractions of the shortest paths between any two 
nodes (in the network) that go through the node. The closeness centrality (Freeman, 1979) of a node is 
a measure of the distance (number of edges on the shortest path) of the node to the rest of the nodes in 
the network. After running the proposed binary search algorithm on a suite of 60 real-world networks, 
we observe the DEG centrality metric, followed by the BWC metric, to be relatively more effective for 
accomplishing larger cascade capacities for the networks when operated with the different percentages 
of initial adopters.

The rest of the chapter is organized as follows: The Background section reviews related work in the 
literature and highlights the unique contributions of this work. The section titled “Hypothesis and Mo-
tivating Example” presents our hypothesis and a motivating example to illustrate the impact of initial 
adopters on the cascade capacity of a network. The section titled “Iterative Algorithm and Information 
Cascade” presents an iterative algorithm used in this chapter to conduct information cascade in a network 
for a given set of initial adopters and threshold fraction of adopted neighbors. The section titled “Binary 
Search Algorithm” presents the proposed binary search algorithm to determine the cascade capacity of 
a network for a given set of initial adopters. The section titled “Analysis of Real-World Networks” pres-
ents the results (largest possible cascade capacities for a suite of 60 real-world networks for 2%, 5% and 
10% of the nodes as initial adopters with respect to each of the four centrality metrics) and analyzes the 
increase in the cascade capacities of the networks with increase in the % of the initial adopters vis-a-vis 
those determined using the intra cluster density approach. The section titled “Future Research Directions” 
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