
304 • Managing Information Technology in a Global Economy

A Teleological Approach to
Information Systems Development

John M. Artz, PhD.
Associate Professor of Management Science

The George Washington University
Washington, DC 20052, Email: jartz@gwu.edu

THE DIALOG OF GORGIAS
In this, very revealing, Platonic dialog, Socrates faces the

sophist Gorgias who is a well-respected public speaker and teacher
of rhetoric. Often Gorgias will give a speech in a public place and
the Athenians will shower him with praise and money for his
efforts. Socrates does not accept money for his teachings, because
his only goal is the pursuit of truth, and the scene is set for a
showdown between the two. Socrates begins by asking Gorgias
who he is. Gorgias responds that he is a teacher of persuasion. The
conflict in the dialog is that Socrates is a seeker of truth. He wishes
to understand the true nature of concepts such as justice and vir-
tue. Gorgias is a teacher of rhetoric. He believes that there is no
truth - that you can convince anybody of anything. Socrates asks
Gorgias to give him an example in which persuasion has value.
Gorgias says that his brother is a physician and often has to con-
vince his patients to undergo unpleasant treatments for the sake of
their health. Socrates asks Gorgias, “What do you persuade the
patient to do?” Gorgias responds “Whatever my brother wants the
patient to do.” There is a moment of realization as Gorgias sees
that his art is all technique. While Gorgias is a master of rhetoric
and can convince anyone of anything, he is lacking in the knowl-
edge of what he should be persuading people of. He is diminished
next to Socrates who is attempting to find out how things should
be. While the rhetorical techniques of Gorgias are dazzling, they
get him nowhere unless somebody else tells him what to do.

TELOS VERSUS TECHNE
This dialog emphasizes the an important distinction between

telos (how things should be) and techne or technique (how to make
things that way). It is exactly the problem that we have with
technology today. There are many Gorgian software developers
who can dazzle you with technique. They can make multicolored
objects dance around on the screen. They can recite version num-
bers and acronyms. They can talk about capacities and capabilities
or object models and plug-ins. But when you say “What is the
point of what you are trying to do?” they balk just as the sophists
balked at Socrates. I do not mean to condemn modern technology
nor the people who have worked very hard to master it. I merely
want to point out that technology is just embodied technique. And
if you cannot answer the question - What should you be doing ? -
technique and technology are of quite limited value.

This conflict between telos and techne can be further ex-
panded into a comparison of teleology and technology. Going back
to the Greek roots, teleology can be thought of as the study of

purposes, while technology can be thought of as the study of
techniques or means to achieve ends. Clearly, means to achieve
ends rely on ends to be achieved in order to have value and conse-
quently technology without teleology doesn’t get you very far.
The purpose of this paper is to suggest a teleological approach to
information systems development, which changes the focus from
the things we could do to the things we should do.

TELEOLOGY
Teleology goes all the way back to Aristotle who was easily

Plato’s most famous student. Aristotle believed that an adequate
understanding of a phenomenon required an understanding of four
causes: formal, material, efficient, and final. The formal cause is the
shape that a thing takes on. A boat and a picnic table, for example,
can be made out of the same material, but take on very different
shapes. The material cause is the stuff out of which the thing is
made. A boat may be made out of wood or steel. The efficient
cause is the procedure by which the thing is made. A boat can be
manufactured, constructed from lumber or carved out of a log. The
final cause is the ultimate purpose of the thing. The purpose of a
boat is to float on water. It is easy to see that a ship builder who
does not understand the final cause of a boat may not be very
successful in building them.

The final cause is ultimately a teleological explanation, which
Aristotle required of all scientific explanations including inanimate
or physical phenomenon. This led to some problematic interpreta-
tions such as – fire rises because it wishes to return to the sun, or
objects fall because they wish to return to the center of the earth.
This attribution of purpose to physical objects does not sit well
with one’s modern sense and indeed Galileo dismissed teleological
explanations from his view of astronomy leading eventually to the
modern view that physical objects simply follow the laws of na-
ture and do not have any ultimate purpose.

It is fairly easy and appropriate to dismiss teleology from
physics, but that does not necessary dismiss this perspective from
all scientific and intellectual endeavors. For example, in biology,
there is an ongoing debate regarding teleological explanations of
biological systems. Can one fully understand the functioning of the
kidney if one does not know that the purpose of the kidney is to
remove waste materials from the bloodstream? It would seem that
one could not. However, does that purpose exist in nature or does
the observer ascribe that purpose in order to improve our under-
standing of the functioning of the kidney. Clearly, this debate can
be easily distracted by the philosophical question of whether or

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

2001 IRMA International Conference • 305

not purposes exist in nature or if purposes are simply superim-
posed on nature in order to make things easier to understand. I
would gladly accept the second and lessor of these claims by say-
ing that it doesn’t matter if purposes exist in nature. Superimpos-
ing purposes on nature in order to make things easier to understand
is a good enough justification for a teleological perspective.

As we move from biological systems to human systems
such as government or economic systems teleological perspectives
become increasingly more important. These systems evolved or
were constructed to satisfy some sort of human need. To discuss
them without discussing the purpose that they serve is to miss the
point completely.

The extreme of teleological thinking can be found in engineer-
ing where objectives are clearly defined and solutions are con-
structed to satisfy those objectives. Although it might be theoreti-
cally possible to describe a construct such as a bridge over a river in
purely physical terms, you probably would not want to drive over
a bridge that was built by someone who did not know that the
purpose of the bridge was to get cars safely from one side of the
river to the other.

Systems engineering was originally very teleological in its
approach. Going back to the late 1960’s, A.D. Hall provides a
description of the systems engineering process, which begins with
a problem definition and development of objectives. Originally,
systems analysis techniques followed this systems engineering
model.But somewhere along the line information systems devel-
opment lost its teleological focus. What happened?

An important clue can be found in Peter Checkland’s Soft
Systems Methodology (SSM). Checkland distinguished between
“Hard Systems” and “Soft Systems” in that hard systems are
fairly well understood problems that are approached from a sys-
tems engineering perspective while soft systems are poorly under-
stood problems that must be approached from a learning systems
perspective. On the hard systems approach Checkland remarks,

“Engineering thinking is teleological; it asks:
what is the purpose served by the object or
system? The engineer works back from the
purpose, or objective, and creates an object or
system which will achieve that objective.” [pg.
274]

By comparison soft systems require a different approach,
“But in many – perhaps most – managerial problems,
at any level, the questions: What are the objectives?
What are we trying to achieve? are themselves part of
the problem.” [pg. 275]

Finally,
“Whereas systems engineering methodology is a
system concerned with achieving objectives, SSM is a
learning system.” [pg. 278]

Hard systems thinking is essentially teleological in nature
and solutions can be defined based on the problem they are in-
tended to solve. Soft systems’ thinking allows the development
process to be as much a learning process as a software develop-
ment process. While Checkland’s paper did not cause the turning
away from teleological approaches, he certainly reflects sentiments
that were widely held in the industry at the time. It was difficult to
talk about purposes when you had little idea what needed to be
done.

The distinction between problem oriented software devel-
opment and learning oriented software development is an impor-
tant one and bears future exploration. If a software development
team truly has no idea what it is attempting to do, then they need
to figure it out somehow. Sometimes that learning occurs by sim-

ply diving into the development process. If this is the case then it
is important to acknowledge that it is a learning process otherwise
one might assume that the resulting system is a solution to the
problem rather than a by-product of the learning process. How-
ever, if the team does know what it is trying to achieve then that
should be articulated as early in the process as possible and a
consensus should be reached on the objectives of the solution
before any software is developed. Learning oriented software de-
velopment is extremely inefficient and unproductive in producing
solutions and should only be employed when the developers truly
do not know what they are trying to achieve.

So the question is reduced to – how often are developers
truly learning and how often do developers have a fairly good idea
of what they are trying to achieve? I think the answer is – develop-
ers probably know a great deal more about what they are trying to
achieve than they realize, but the nature of information systems
development forces us to take a learning systems approach. If we
treat every problem as a unique problem, then every solution will
be a unique solution. However, the growing use of application
generators and object models, suggests that we have learned a lot in
terms of reusing software. What we are not reusing is our experi-
ence in problem solving.

A TELEOLOGICAL APPROACH TO INFORMATION
SYSTEMS DEVELOPMENT

Information systems development should begin with a prob-
lem to be solved. That problem should be articulated and agreed
upon. As the process continues the problem statement may have
to be refined as developers learn more about using a problem solv-
ing approach. This sounds like a learning system and indeed it is.
But the difference is that the purpose is to eventually get out of
learning system mode. When the project is finished, the team should
reflect on the process and figure out what worked and what didn’t.
Suggestions for improvements in the process should be incorpo-
rated into the next development effort. Eventually, the developers
will get better at applying a problem solving approach until it is no
longer a learning systems process.

The problem should be decomposed into objectives, which
are really just subproblems. These subproblems should be articu-
lated and agreed upon just as the problem statement was. And just
as was the case with the problem statement, the developers should
reflect on the objectives when the project is finished, and then
figure out how to improve their articulation of objectives.

The process of stating a problem and then decomposing it
into objectives is really just another decomposition technique. Struc-
tured analysis decomposes a system into processes. Information
modeling decomposes a system into entities. And object oriented
analysis decomposes a system into reusable components. Why is
decomposition into objectives any better?

There are several answers to this question. First, decompo-
sition into objectives is a higher level abstraction and thus more
general. Once the purpose of the solution system is understood,
parts of the system may be analyzed further using any of the
above techniques. However, the above techniques are all more
specific and consequently don’t serve to organize the overall pur-
pose of the system being developed. Second, objectives are easier
for people to understand. The average person can grasp the con-
cept of what the developers are trying to achieve much more easily
than they can grasp the implications of a data flow diagram or
object model. Finally, and because objectives are easier to under-
stand, it is easier to gain consensus and develop a shared vision of
what the system under development is suppose to do when it is
complete. This shared vision is critically important because thou-

306 • Managing Information Technology in a Global Economy

sands of design decisions, large and small, will be made at various
points by developers based on their understanding of the pro-
posed system. If they do not have a shared vision, the resulting
system is likely to be a hodgepodge of conflicting design decisions.
Finally, it is much less expensive to correct design flaws earlier in
the development process. If there is no agreement on what the
proposed system is supposed to do, it is better to find that out
when working on the problem statement than during development.

If a problem-oriented approach is so beneficial, why doesn’t
everybody do things this way? The answer is that defining a prob-
lem and decomposing it into objectives is difficult to do correctly.
It is difficult for three reasons. First, objectives are less concrete
than processes, entities, or reusable components. However, as
systems analysis techniques have evolved from flowcharts and
decision tables to data flows and entities, the progress has been
toward higher levels of abstraction in order to control the complex-
ity of large systems. So decomposition into objectives, although
difficult, is necessary as we develop increasingly more complex
information systems. Second, it takes a fair amount of experience
in defining objectives before one gets very good at it. Approaching
information systems development as a learning experience rather
that from a process improvement perspective does not allow you
to get any better. In order to overcome this problem, developers
should approach every system from a problem solving perspec-
tive and when they are done, they should reflect on how well they
did and what they can do better the next time. Finally, problems
and objectives are amorphous terms to most people. In order to be
successful in a problem solving approach we need more structure
in the concept and a better understanding of problems and objec-
tives. The remainder of the paper will address this issue.

STATING THE PROBLEM
Some times it is difficult to succinctly articulate the ultimate

purpose of an information system. Usually there are multiple pur-
poses and multiple levels. And there are many things that need to
be done that are not contributing to an ultimate purpose in any
obvious way. Information system requirements are usually very
difficult to understand and comprehend in their entirety for just
this reason. Since developers cannot reliably build a system that
they cannot understand, it makes sense to reduce this complexity
to something that they can understand. On this issue, Gause and
Weinberg offer the following advice: “A possible solution is to
regard every design project as an attempt to solve some problem.”

Some developers are skeptical of viewing software develop-
ment as solving a problem. Frequently, software is developed to
exploit an opportunity. However, the difficulty here lies in the
common semantics of the word ‘problem’ versus a more precise
technical definition. A problem is not necessarily something ‘wrong’
with the organization. Again, Gause and Weinberg offer some di-
rection: “A problem can be defined as a difference between things
as perceived and things as desired.” A problem here is a gap be-
tween the way things are and the way we would like things to be.
Since nobody’s life or organization is perfect there are many in-
stances of a gap between the current and the desired state. So every
person and every organization has problems that do not necessar-
ily reflect negatively upon them.

But not all problems are solvable problems. If a person thinks
that the desired state for their organization is that everybody should
be a millionaire then there is a gap that is unlikely to be closed.
However, if a person thinks that paychecks should come out on
time and be accurate, then it is a gap that it is possible to close. This
idea is then embodied in the concept of a ‘solvable problem.’ A
solvable problem is a problem in which the desired state can be

achieved given the resources available to the problem solver. That
is, there is a gap between the current and desired state. It is a gap
that we know how to close given the necessary talent and other
resources. And those resources are available.

Now we must take a fairly large step and claim that in a
teleological approach to information systems development we
should only work on solvable problems. This claim must raise
eyebrows and it certainly flies in the face of the Soft Systems
Methodology. SSM claims that we often do not know what we are
doing in information systems development for a wide variety of
very good reasons. How then would we ever build a new system or
develop software that has never been developed before.

There are two important responses. First, I believe that we
grossly exaggerate the extent to which software being developed is
truly new. It is much more likely that developers who are unaware
of what other developers have done are simply solving the same
problem again in a different way. In recent years we have seen a
proliferation of object models which suggest that there are com-
mon solutions to information systems problems and that it makes
much more sense to learn about and utilize common solutions
rather than constantly reinventing everything.

Second, if the software to be developed is truly new, then it
is a learning process not a software development process. The
problem to be solved is the gap between the developers current
understanding of the application or technology and the level of
understanding that would be required to approach the application
from a teleological perspective. Once that problem is solved, the
developers can focus on the application problem. Certainly no one
would ever board an airplane that was built so that the engineers
could learn about aerodynamics. But we seem to think that it is
O.K. for an organization to rely on an information system that was
built so that the developers could learn about the application.

It is certainly fair to observe that information systems typi-
cally solve many problems. This may very well be true. But it is
also fair to observe that some problems are more important the
other problems and some problems are subsumed in larger prob-
lems. We cannot loose cite of the fact that our analytical techniques
in information systems are driven by limitations in human cogni-
tion. Decomposition techniques, for example, are a result of a
recognition that we cannot understand complexity. We have to
break it down into pieces and then understand the pieces. In the
same way, a multifaceted problem may be a more accurate descrip-
tion of the situation, but if nobody can understand it, then it serves
little purpose in the development process. A clearly stated prob-
lem may necessarily exclude something that is otherwise deemed
important. But it may also increase the likelihood of success in the
development process.

DEFINING OBJECTIVES
The weakness in current methods of decomposition such as

data flows, entities or objects is that they do not address what the
system under construction is supposed to do. They may address
the way things are currently done, or the way they could be done,
but they do not address the way they should be done in order to
solve the problem at hand. Using objectives in the system develop-
ment process provides a means for addressing the purpose of the
system in a highly structured and systematic fashion, thus filling
the gaps left by traditional methodologies. Historically, the prob-
lem with using objectives has been the lack of structure in the
process of defining objectives. Objectives are a decomposition of
system purpose in the same sense that modules are a decomposi-
tion of system function. Viewing objectives in this way makes it
possible to distinguish well stated objectives from poorly stated

2001 IRMA International Conference • 307

objectives. Further it is possible to identify different kinds of
objectives (component, competing, and constraining) and how they
relate to each other.

An objective is a subproblem that arises when a problem
space is decomposed into (relatively) independent components.
This is to say that an objective is a solvable subproblem. An
objective is a definition of purposeful activity that not only de-
fines a desired end state but also carries within its statement some
understanding of how that end state will or should be achieved.
Viewed as a decomposition of the problem space, objectives should

have the following characteristics:
1) Objectives should be mutually independent, and each ob-

jective should solve one aspect of the problem in its entirety.
2) Objectives should be collectively comprehensive so that

if all objectives are met the problem will be solved.
3) Objectives should lend themselves to further hierarchical

decomposition so that if an objective is too large to tackle directly,
it can be broken into subcomponents that again have the character-

istics being stated here.
4) Every objective should state some important aspect of

the resulting solution and by implication should indicate some-
thing that is not important. Hence, objectives of this type should
guide the developers solving the problem at every stage as to the

goals of the solution they are trying to produce.
In addition, the following aspects of objectives should also

be observed:
1) There are three levels of objectives and objectives must

match the level of the problem that they are addressing.
2) There are as many different kinds of objectives as there

are interests in the solution.
3) Objectives can be related to each other as components,

competitors, or constraints. As components they can be orga-
nized hierarchically as a means ends analysis of the problem space.
As competitors they represent conflicting goals and must be exam-
ined in a trade-off analysis. As constraints they place limitations

on the possible solutions to the problem under consideration.
4) Some objectives are units of work toward which action

will be directed. These actions will be human and organizational

actions. Hence, these objectives must be achievable units of work.

REFERENCES
Artz, John (1996) Information Systems Development By

Objectives. Proceedings of the 1996 Eastern Acadamy of Manage-
ment Meeting “New Connections in the Information Age” Crystal
City, Virginia. March 1996.

Beckner, M. (1967) Teleology. In Edwards, P. (ed.) Encyclo-
pedia of Philosophy. Vol. 8, 1967, pp. 88-91.

Checkland, P.B. (1989) Soft Systems Methodology. Human
Systems Management. 8(4). Pp. 271-289.

Gause, D. and Weinberg, G. (1989) Exploring Requirements:
Quality Before Design. Dorset House Publishing.

Hall, A.D. (1969) A three dimensional morphology of sys-
tems engineering. IEEE Transactions on Systems Science and
Cybernetics. Vol. SSC-5., No. 2., pp. 156-160.

Losee, J. (1993) A Historical Introduction to the Philoso-
phy of Science. (3e) Oxford University Press.

Nagel, Ernest (1979) Teleology Revisited and Other Essays
in the Philosophy and History of Science. Columbia University
Press.

Plato. Gorgias. Translated by James H. Nichols, Jr. 1998.
Sugrue, M. (1998) Plato, Socrates, and the Dialogues. The

Teaching Company. Superstar Lecture Series.

For a more detailed discussion of objectives and their role in
information systems development see Artz [1996].

SUMMARY AND CONCLUSIONS
For well-understood problems, a teleological approach is the

most effective because it focuses resources towards the solution of
the problem. The problem should be a fairly well-understood and
well-defined solvable problem. This problem can then be further
decomposed into objectives, which are essentially solvable sub-
problems. This raises the question – how often do we address
well-understood and well-defined solvable problems in informa-
tion systems development. It seems that we might do this more
often than we currently do, by employing a problem solving ap-
proach and improving it over repeated development efforts.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/teleological-approach-information-

systems-development/31631

Related Content

Interpretable Image Recognition Models for Big Data With Prototypes and Uncertainty
Jingqi Wang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/interpretable-image-recognition-models-for-big-data-with-prototypes-and-

uncertainty/318122

Feature Engineering Techniques to Improve Identification Accuracy for Offline Signature Case-

Bases
Shisna Sanyal, Anindta Desarkar, Uttam Kumar Dasand Chitrita Chaudhuri (2021). International Journal of

Rough Sets and Data Analysis (pp. 1-19).

www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-

signature-case-bases/273727

The 2018 Facebook Data Controversy and Technological Alienation
Ananda Mitraand Yasmine Khosrowshahi (2021). Encyclopedia of Information Science and Technology,

Fifth Edition (pp. 449-461).

www.irma-international.org/chapter/the-2018-facebook-data-controversy-and-technological-alienation/260205

Coping with Information Technology
Anne Beaudry (2009). Handbook of Research on Contemporary Theoretical Models in Information Systems

(pp. 516-528).

www.irma-international.org/chapter/coping-information-technology/35849

Factors Influencing the Adoption of ISO/IEC 29110 in Thai Government Projects: A Case Study
Veeraporn Siddooand Noppachai Wongsai (2017). International Journal of Information Technologies and

Systems Approach (pp. 22-44).

www.irma-international.org/article/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/169766

http://www.igi-global.com/proceeding-paper/teleological-approach-information-systems-development/31631
http://www.igi-global.com/proceeding-paper/teleological-approach-information-systems-development/31631
http://www.irma-international.org/article/interpretable-image-recognition-models-for-big-data-with-prototypes-and-uncertainty/318122
http://www.irma-international.org/article/interpretable-image-recognition-models-for-big-data-with-prototypes-and-uncertainty/318122
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/chapter/the-2018-facebook-data-controversy-and-technological-alienation/260205
http://www.irma-international.org/chapter/coping-information-technology/35849
http://www.irma-international.org/article/factors-influencing-the-adoption-of-isoiec-29110-in-thai-government-projects/169766

