
434 • IT Management in the 21st Century

Design Patterns in Architectures Based
on Use Cases
Alfredo Matteo and Christiane Metzner

Laboratorio Teoría y Tecnologías Orientadas a Objetos, Lenguajes y Sistemas TOOLS, Escuela de Computación, Facultad de Ciencias, Universidad
Central de Venezuela, Apdo. 47764, Caracas 1041-A, Venezuela, amatteo/cmetzner@isys.ciens.ucv.ve

ABSTRACT
Object-orientation claims to promote reuse and therefore reduce development time and improve software quality. The reuse originally was
considered at class level, that is, libraries of reusable classes. Progress in object technology gives today more importance to software
architectures and design patterns. Any large object-oriented system should be built with design patterns. In this work we present an ap-
proach for developing an architecture based on use cases and the identification of some central design patterns. A case study exemplifying
the proposed architecture is discussed.

1. INTRODUCTION
Progress in object technology and software engineering has made it

possible to systematically create reusable application area architectures.
Software architecture is emerging as a natural evolution of design abstrac-
tions involving the description of structural elements from which systems
are built, interactions among those elements, patterns that guide their com-
position and constraints on these patterns. Historically, reusable software
components have been procedure and function libraries (the 1960s) and in
the late 60’s, Simula67 introduced objects, classes and inheritance that
resulted in class libraries. Both, the procedural and class libraries, are fo-
cused on code reuse. Since design is the main intellectual content of soft-
ware and it is more difficult to create and re-create then code, design reuse
should be more beneficial in economic terms. This has resulted in object-
oriented frameworks and design patterns [2]. Besides specifying the struc-
ture and topology of the system, the architecture shows the correspon-
dence between the system requirements and elements of the constructed
system, thereby providing some rationale for the design decisions [8].

The OOSE method [4] and particularly use cases are a powerful ap-
proach for gathering early high level requirements: identifying user re-
quirements, activities to be performed and user-system interactions. Un-
der this method five different models are built: requirements, analysis,
design, implementation and testing. The requirement and analysis models
provide a description of the visible behavior of a system and could serve
as a good basis for an object-oriented architecture.

In this work an architecture derived from the OOSE analysis model is
proposed and expanded with Design Patterns as defined by [3]. This work
is structured in the following sections: besides this introduction and the
conclusions, in section 2 we describe briefly the essentials of frameworks
and design patterns, in section 3 the proposed architectures based on use
cases are discussed and a possible design with design patterns is presented
and in section 4 an example using the architecture based on use cases is
presented.

2. ESSENTIALS OF FRAMEWORKS AND DESIGN
PATTERNS

An object-oriented framework is a reusable design for an application
represented by a set of abstract classes and their collaborations. Together
with the framework there is code that provides a default implementation.
A framework then implies reuse of both code and design. It emphasizes
those parts that will remain stable and the relationships and interactions
among them and point out those parts that are likely to be customized for
the application under development. In [3] or GoF Catalog, the concept of
object-oriented design patterns was introduced, which can be used for de-
scribing parts of a design. A framework can contain a number of design
patterns, but the opposite is never possible [2]. A generally accepted defi-
nition is, a design pattern is a solution of a recurring problem in a certain
context. The GoF Catalog [3] contains 23 catalog entries that are quite
domain independent, well-documented designs. They are specified using
the following items:
• Motivation: a concrete scenario illustrates why a pattern is useful
• Abstract description of participating components and their interaction
• Guidelines regarding its application

• Code examples
• Cross-references to other design patterns

Design Patterns are a way of encapsulating developer’s experience in
a form that is easily communicated to other programmers and they provide
among others: encapsulation experience, a common vocabulary and docu-
mentation of software designs.

3. ARCHITECTURES BASED ON USE CASES.
Software architecture encompasses the set of significant decisions

about the organization of a software system [5], [1]: selection of the struc-
tural elements and their interfaces by which a system is composed, behav-
ior as specified in collaborations among those elements, composition of
these structural elements and behavioral elements into larger subsystem,
architectural style that guides this organization

In the OOSE [4] method three kinds of objects are identified for each
use case in the analysis model: interface, control and entity objects. As
part of the analysis a robust architecture is defined which is resilient to
change and fulfill the use cases. Some guidelines for control object identi-
fication are [4]:
- at least one control object can be assigned to each concrete or abstract

use case
- each actor has at least an interface object through which he interacts

with the system.
Following these guidelines a control object can be associated with

each use case and an interface object can be associated to each actor that
communicates with the system. The control objects serve as a ”glue” be-
tween interface and entity objects. The entity objects may be persistent, in
which case they have to be retrieved and stored in a data store.

From the above stated and using the schema for defining analysis ob-
jects in OOSE [9] an analysis model centered on the use cases identified
for each human actor can be built: a central control object for each actor of
the system, associated with control objects one for each use case the actor
interacts with. A central interface object for each actor from where he can
interact with the system and execute the use cases. Note that for non-hu-
man actors there will be no interface objects and entity objects only com-
municate with control objects.

The use of this schema for analysis model development is a way of
handling complexity in large systems; partial analysis models are built one
for each actor of the system. Clearly, entity objects that may intervene in
more than one use case as well as control and interface objects may appear
more than once, since more than one actor may interact with the same use
case. Therefore it is necessary to factorize the partial analysis models when
building the complete analysis model. Moreover, this factorization should
be expressed by the software architecture definition as a traceability basis
between analysis and design and is shown in Figure 1 where the control
components are already depicted as classes.

In this architecture based on use cases the following software compo-
nents can be identified: control, interface and entity components contain-
ing respectively the implementation of control, interface and entity ob-
jects, and a data store component encompassing the persistent objects of
an application.

To obtain independence between the data store and the control com-

This paper appears in Challenges of Information Technology Management in the 21st Century, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2000, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4509
IDEA GROUP PUBLISHING

2000 IRMA International Conference • 435

ponent a broker handling all services that require accessing the data store
is introduced. The definition of this broker considers geographically non-
distributed databases and / or files. For distributed applications, solutions
with some leading technology as CORBA [10], DCOM [12] or RMI [11]
should be considered.

For expressing the architecture the following considerations are made:
suppose k human actors have been identified, j non-human actors and m
use cases. There should be at least one human actor and one use case.
• The entity component encompasses all the implementations of the

entity objects required for system execution.
• The m control_usecase components, one for each identified use case.

They have at least the responsibility of requesting services from the
broker and transmit the result of this service; they also communicate
with the entity component were all active objects are located.

• The broker is a layer between the data and the application. He com-
municates only with control objects control_usecase, not necessarily
with all of them.

• The k control_humanactor that receive the stimulus from an actor
through the corresponding interface component and send a message to
the appropriate control_usecase.

• The j control_nonhuman connecting directly to j components that
represent non-human actors.

• The k interface components, one for each human actor.
• One central control component connected to k control_humanactor

components.
• One system interface component that allows user identification and

connects to the central control component.
The broker provides services to the clients independently of where

the service is located and how it is implemented. The Facade pattern [3]
intent is to provide a unified set of interfaces in a subsystem. Facade de-
fines a higher-level interface that makes the subsystem easier to use. This
intent is exactly what is needed in the broker’s design; usually only one
Facade object is required. Thus Facade objects are often Singletons [3]. A
high-level diagram of the broker is shown in Figure 2. In the context of the
architecture, the clients (control_usecase components) send requests to the
broker (Facade pattern) which forwards them to the appropriate data store,
that performs the actual work. The broker may have to do some internal
work to translate its interface to the data store interfaces. For all the data-
bases and / or files the same operations will be defined, as insert, delete,
retrieve one or a set of elements but will be applied to different data stores.
This can be adequately resolved by incorporating the Visitor pattern [3]
which can be used when an object structure contains many classes of ob-

jects with different interfaces and the operations on these objects depend
on their concrete classes. In Figure 3 the structure of the broker using the
three design patterns Facade, Visitor and Singleton is shown.

4. AN EXAMPLE
One of the goals of the Medical Science School at our University is to

enable the diffusion of medical expert knowledge and use the technology
to create a knowledge base for medical science education. The expert knowl-
edge we are particularly interested in is focused on tropical diseases such
as malaria or Chagas malady.

We started with three pilot applications to provide input for the case
study [7]. The three applications are hypermedia tools that provide medi-
cal users with an environment allowing them to create their hypermedia
documents. They are used in medical science education and the dissemi-
nation of medical expert knowledge in tropical diseases but they can be
used in any other domain of medical sciences.

The tools developed also known as Software CAIBCO (Centro de
Analisis de Imagenes Biomedicas Computarizadas, http://caibco.ucv.ve)
are:
• Io: the digitizator and editor for creating the multimedia objects to be

used in hypermedia documents.
• Zeus: the authoring tool used to create and annotate hypermedia docu-

ments
• Sphinx: the administration tool used to register information about the

users (visiting users, registered users, Intranet users and system ad-
ministrator) and objects in the system.
The development process used, defined in [5], is an iterative/incre-

mental process that combines the methods OOSE [4] and OMT [6] main-
taining the identity and flavor of each of the methods and taking advan-
tages of the strong points of each one.

The authoring tool Zeus allows medical experts to create, annotate or
update hypermedia documents using a web-based user interface (WUI). A
hypermedia document consists of a set of pages. A page can be filled with
multimedia objects (MMO) and subsequently connected to other pages. A

Figure 2. High-level design of the broker using design patterns

Figure 1. An architecture based on use cases

Figure 3. The Broker with design patterns

436 • IT Management in the 21st Century

multimedia object is any
piece of information such as
audio, video, images or text
and they have different ca-
pabilities and constraints.

Caibco‘s software has
the following kinds of us-
ers: registered, visiting and
Intranet / Internet users.
Registered users are the fol-
lowing actors: Big Guru
MD, Little Guru MD,
Laboratorist and Adminis-
trator. Visiting users are
those actors that can browse
through hypermedia docu-

ments but are not allowed to create or update them and interment users are
those that access the hypermedia documents using a standard market
browser. The software has a WUI, a digitization GUI (Graphical User In-
terface) and an authoring WUI. Through these WUI’s and GUI the actors
communicate with the system. The digitization tool is not available on the
Web; it may only be used at our installations. The Laboratorist is the actor
in charge of the digitization and edition of images that can be used with the
authoring tool. He feeds the system

with the images and their description. He may use any of the installed
software for doing his job: Gscan, Capture, Imgwork, Moviemaker, and
Movieplayer. New software for scanning and image edition may also be
added. The Big Guru Medical Doctor (MD) is the actor whose expert knowl-
edge will be incorporated into the system. This actor has great expertise in
a particular medical area and although he may directly use the system to
incorporate his knowledge, generally the Little Guru MD interacts with
the Big Guru MD and the system. Both can be considered a specialization
of an actor MD. He is in charge of collecting the expert knowledge, coor-
dinates and decides which information and in what order will be put into
the hypermedia documents The Browser is a non-human actor that inter-
acts with the Caibco software and with a Web Navigator, a secondary actor
that browses through existing and public hypermedia documents, typically
students or physicians who want to learn or know something about a par-
ticular medical area. The Administrator is the actor responsible of all the
administrative tasks related to registering and controlling the resources of
the system. The use case model of Caibco‘s software is presented in Fig-
ure 4.

The MMO´s that can be used in the pages of a document, like X-rays,
electrocardiograms (ECG), computerized tomography (CT) among others
must have been digitized using the Io tool and stored in the MMO data-
base. Information about these can be obtained through Sphinx.

Instantiating the broker with design patterns to our example the fol-
lowing diagram can be obtained:

5. CONCLUSIONS

The use of the proposed architecture based on use cases and design
patterns allows a team to focus on the problem rather then on implementa-
tion details, and through them efficient application of the object-oriented
paradigm is understood and applied. From an architectural point of view,
it is very important to find out how design objects are related.

If, as in our case, we had to start learning design patterns before ap-
plying them, an initial investment of time has to be considered before see-
ing results. We still have much more to learn about architectures, design
patterns and frameworks before we can claim proficiency in capturing
patterns from experts and sharing them, but it seems to be a way leading to
productivity benefits worthwhile to be explored.

ACKNOWLEDGEMENT
This work has been partially supported by projects No. PG 03-13-

4241-1998 from the CDCH and S1-95000512 Conicit.

REFERENCES
[1] Booch, G.; Kruchten, P.; Software Architecture and the UML, Tutorial

53W, OOPSLA´98, Vancouver, BC, Canada
[2] Mattson, M.; Object-Oriented Frameworks, University College of

Karlskrona, / Ronneby, Sweden, 1996
[3] Gamma E.; Helm R.; Johnson R.; Vlissides J.; Design Patterns. Ele-

ments of Reusable Object-Oriented Software, Addison Wesley Pub-
lishing Co., 1994.

[4] Jacobson, I.; Christenson M.; Overgaard G.;Object-Oriented Software
Engineering, a Use Case Driven Approach, Addison Wesley Publish-
ing Co., 1992

[5] Aluen, M.; Arrechedera H.; Matteo, A.; Metzner, Ch.; Developing a
Web-based Object-Oriented Multimedia Medical System, The Thirty
Second Hawai‘i Conference on System Science, HICCS-32, Maui,
Hawaiì, USA, January 1999

[6] Rumbaugh J.; Blaha, M.; Premerlani, W.;Eddy, F.; Lorensen W.; Ob-
ject-Oriented Modeling and Design , Prentice Hall International Inc,
1991.

[7] Romero M.; Procesos y Estrategias para incorporar Patrones de Diseño
en Aplicaciones: Caso Estudio Software Caibco, Tesis de Licenciatura,
Universidad Central de Venezuela, 1998

[8] Shaw, M.; Garlan, D.; Software Architecture Perspective on an Emerg-
ing Discipline, Prentice Hall, New Jersey, 1996

[9] Losavio, F.; Matteo, A.; Use case and multiagent models for object-
oriented design of user interfaces, Journal of Object-Oriented Program-
ming, May 1997, Vol.10, No. 2

[10]Orfalli, Robert; Harkey, Dan Client/Server Programming with JAVA
and CORBA.John Wiley & Sons. 1997.

[11]Java Remote Method Invocation Specification. Revision 1.4. JDK 1.1
FCS, February 10, 1997

[12]Distributed Component Object Model Protocol. DCOM/1.0. Network
Working Group. November, 1996.

Figure 5. Instantiation of the architecture for CAIBCO

Figure 6. The Broker in CAIBCO’s softwareFigure 4. Use Case Model for CAIBCO

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/design-patterns-architectures-based-

use/31555

Related Content

Impact of the Learning-Forgetting Effect on Mixed-Model Production Line Sequencing
Qing Liuand Ru Yi (2021). International Journal of Information Technologies and Systems Approach (pp.

97-115).

www.irma-international.org/article/impact-of-the-learning-forgetting-effect-on-mixed-model-production-line-

sequencing/272761

A Cross Layer Spoofing Detection Mechanism for Multimedia Communication Services
Nikos Vrakasand Costas Lambrinoudakis (2011). International Journal of Information Technologies and

Systems Approach (pp. 32-47).

www.irma-international.org/article/cross-layer-spoofing-detection-mechanism/55802

Metaheuristic Algorithms for Detect Communities in Social Networks: A Comparative Analysis

Study
Aboul Ella Hassanienand Ramadan Babers (2018). International Journal of Rough Sets and Data Analysis

(pp. 25-45).

www.irma-international.org/article/metaheuristic-algorithms-for-detect-communities-in-social-networks-a-comparative-

analysis-study/197379

Image Identification and Error Correction Method for Test Report Based on Deep Reinforcement

Learning and IoT Platform in Smart Laboratory
Xiaojun Li, PeiDong He, WenQi Shen, KeLi Liu, ShuYu Dengand LI Xiao (2024). International Journal of

Information Technologies and Systems Approach (pp. 1-18).

www.irma-international.org/article/image-identification-and-error-correction-method-for-test-report-based-on-deep-

reinforcement-learning-and-iot-platform-in-smart-laboratory/337797

Impact of Business Groups on Payout Policy in India
Ahana Bose (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 61-70).

www.irma-international.org/chapter/impact-of-business-groups-on-payout-policy-in-india/183720

http://www.igi-global.com/proceeding-paper/design-patterns-architectures-based-use/31555
http://www.igi-global.com/proceeding-paper/design-patterns-architectures-based-use/31555
http://www.irma-international.org/article/impact-of-the-learning-forgetting-effect-on-mixed-model-production-line-sequencing/272761
http://www.irma-international.org/article/impact-of-the-learning-forgetting-effect-on-mixed-model-production-line-sequencing/272761
http://www.irma-international.org/article/cross-layer-spoofing-detection-mechanism/55802
http://www.irma-international.org/article/metaheuristic-algorithms-for-detect-communities-in-social-networks-a-comparative-analysis-study/197379
http://www.irma-international.org/article/metaheuristic-algorithms-for-detect-communities-in-social-networks-a-comparative-analysis-study/197379
http://www.irma-international.org/article/image-identification-and-error-correction-method-for-test-report-based-on-deep-reinforcement-learning-and-iot-platform-in-smart-laboratory/337797
http://www.irma-international.org/article/image-identification-and-error-correction-method-for-test-report-based-on-deep-reinforcement-learning-and-iot-platform-in-smart-laboratory/337797
http://www.irma-international.org/chapter/impact-of-business-groups-on-payout-policy-in-india/183720

