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ABSTRACT

This chapter introduces innovative approaches for the efficient use of some of 
the most novel techniques based on tasking to optimize dense linear algebra 
operations. The idea is to explore high-level programming techniques that 
increment the programming productivity and performance for dense linear 
algebra operations. The authors apply these techniques on some of the most 
important and widely used dense linear algebra kernels, such as the GEMM 
and TRSM routines of the BLAS-3 standard, as well as the LU factorization 
and solve of the LAPACK library. The authors use as target platforms two 
different current HPC architectures: a CPU multi-core processor and a GPU 
hardware accelerator. Different approaches are presented depending on the 
target platform, but always based on tasking.

INTRODUCTION TO DENSE LINEAR ALGEBRA

Dense Linear Algebra (DLA) operations are at the bottom of numerous 
engineering and scientific applications, which rely on DLA routines to make 
their calculations. The importance of DLA is observed in a wide variety of 
fields, such as macromolecular simulations, forecasting or medical care, among 
others. A straightforward consequence of this situation is the existence and 
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continuous improvement of several DLA libraries. Both vendor and open-
source solutions exist nowadays, e.g., Intel MKL (Intel Software, 2012), 
IBM ESSL (IBM, 2012), PLASMA (PLASMA Project, 2020), libFLAME 
(Gunnels & van de Geijn, 2001), ScaLAPACK (Castaldo & Whaley, 2010), 
LASs (Valero et al., 2019), sLASs (Valero et al., 2020), just to mention a few.

All the mentioned libraries provide either BLAS (Netlib.org, 2017), 
LAPACK (Netlib.org, 2019) or both functionalities via the use of different 
programming models and parallelization strategies. The common target in 
all cases is the increase of performance, although each library focuses on a 
different aspect. On the other hand, LAPACK routines are usually implemented 
relying on BLAS level routines, making their optimization key in order to 
improve the performance at both levels: BLAS and LAPACK (Figure 1).

At the same time, BLAS routines are subdivided in three more levels, 
which rely one on the others. BLAS levels are referred as BLAS-1, BLAS-2 
and BLAS-3, depending on the type of input data. In the early 1980s, when 
BLAS development started, the most powerful computers featured vector 
processors. For this reason, the original BLAS (nowadays BLAS-1) was 
designed to work on vectors. A few years later, in 1987, BLAS-2 appeared 
as an extension of the previous routines to perform matrix-vector operations. 
However, with the creation of new architectures that integrated multiple levels 
of cache memory, in order to mitigate the difference in throughput between 
the processor and memory, the existing BLAS levels were not able to attain 
reasonable performance. The ratio between the number of operations and 
data movement is O(1) in both cases, but this proportion is much higher 
between the processor frequency and the memory bandwidth. As a response 
to the new scenario, BLAS-3 was created in 1989 to palliate the effect of 
memory data transfers. By the use of blocked algorithms that increased the 

Figure 1. BLAS and LAPACK interaction
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