
Copyright © 2023, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

47

DOI: 10.4018/978-1-7998-7082-1.ch003

ABSTRACT

This chapter introduces innovative approaches for the efficient use of some of
the most novel techniques based on tasking to optimize dense linear algebra
operations. The idea is to explore high-level programming techniques that
increment the programming productivity and performance for dense linear
algebra operations. The authors apply these techniques on some of the most
important and widely used dense linear algebra kernels, such as the GEMM
and TRSM routines of the BLAS-3 standard, as well as the LU factorization
and solve of the LAPACK library. The authors use as target platforms two
different current HPC architectures: a CPU multi-core processor and a GPU
hardware accelerator. Different approaches are presented depending on the
target platform, but always based on tasking.

INTRODUCTION TO DENSE LINEAR ALGEBRA

Dense Linear Algebra (DLA) operations are at the bottom of numerous
engineering and scientific applications, which rely on DLA routines to make
their calculations. The importance of DLA is observed in a wide variety of
fields, such as macromolecular simulations, forecasting or medical care, among
others. A straightforward consequence of this situation is the existence and

Dense Linear Algebra:
Applying New Features to

Traditional Paradigms

48

Dense Linear Algebra

continuous improvement of several DLA libraries. Both vendor and open-
source solutions exist nowadays, e.g., Intel MKL (Intel Software, 2012),
IBM ESSL (IBM, 2012), PLASMA (PLASMA Project, 2020), libFLAME
(Gunnels & van de Geijn, 2001), ScaLAPACK (Castaldo & Whaley, 2010),
LASs (Valero et al., 2019), sLASs (Valero et al., 2020), just to mention a few.

All the mentioned libraries provide either BLAS (Netlib.org, 2017),
LAPACK (Netlib.org, 2019) or both functionalities via the use of different
programming models and parallelization strategies. The common target in
all cases is the increase of performance, although each library focuses on a
different aspect. On the other hand, LAPACK routines are usually implemented
relying on BLAS level routines, making their optimization key in order to
improve the performance at both levels: BLAS and LAPACK (Figure 1).

At the same time, BLAS routines are subdivided in three more levels,
which rely one on the others. BLAS levels are referred as BLAS-1, BLAS-2
and BLAS-3, depending on the type of input data. In the early 1980s, when
BLAS development started, the most powerful computers featured vector
processors. For this reason, the original BLAS (nowadays BLAS-1) was
designed to work on vectors. A few years later, in 1987, BLAS-2 appeared
as an extension of the previous routines to perform matrix-vector operations.
However, with the creation of new architectures that integrated multiple levels
of cache memory, in order to mitigate the difference in throughput between
the processor and memory, the existing BLAS levels were not able to attain
reasonable performance. The ratio between the number of operations and
data movement is O(1) in both cases, but this proportion is much higher
between the processor frequency and the memory bandwidth. As a response
to the new scenario, BLAS-3 was created in 1989 to palliate the effect of
memory data transfers. By the use of blocked algorithms that increased the

Figure 1. BLAS and LAPACK interaction

45 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/dense-linear-algebra/313454

Related Content

Fundamentals of Data Structures: Stacks, Queues, Linked Lists, and Graphs
D. Varshaa, A. Keerthana Deviand M. Sujithra (2023). Advanced Applications of

Python Data Structures and Algorithms (pp. 1-34).

www.irma-international.org/chapter/fundamentals-of-data-structures/326076

Computer Architectures and Programming Models: How to Exploit

Parallelism
 (2023). Developing Linear Algebra Codes on Modern Processors: Emerging

Research and Opportunities (pp. 26-46).

www.irma-international.org/chapter/computer-architectures-and-programming-models/313453

Introduction to Geospatial Data and Python Programming
D. Shanmugapriyaa, M. Sujithra, B. Senthilkumar, V. Sachin Kumarand Ram Sanjai

(2024). Geospatial Application Development Using Python Programming (pp. 1-38).

www.irma-international.org/chapter/introduction-to-geospatial-data-and-python-

programming/347432

Collections
 (2023). Principles, Policies, and Applications of Kotlin Programming (pp. 159-168).

www.irma-international.org/chapter/collections/323937

Python for Geospatial Data Analysis
Gurram Sunitha, K. G. Suma, Mohammad Gouse Galety, Ganesh Davanamand

Chinthapatla Pranay Varna (2024). Ethics, Machine Learning, and Python in

Geospatial Analysis (pp. 94-119).

www.irma-international.org/chapter/python-for-geospatial-data-analysis/345906

http://www.igi-global.com/chapter/dense-linear-algebra/313454
http://www.igi-global.com/chapter/dense-linear-algebra/313454
http://www.irma-international.org/chapter/fundamentals-of-data-structures/326076
http://www.irma-international.org/chapter/computer-architectures-and-programming-models/313453
http://www.irma-international.org/chapter/introduction-to-geospatial-data-and-python-programming/347432
http://www.irma-international.org/chapter/introduction-to-geospatial-data-and-python-programming/347432
http://www.irma-international.org/chapter/collections/323937
http://www.irma-international.org/chapter/python-for-geospatial-data-analysis/345906

