Chapter 3

Metaphor, Self-Reflection, and the Nature of Mind

John A. Barnden
University of Birmingham, UK

Abstract

This chapter speculatively addresses the nature and effects of metaphorical views that a mind can intermittently use in thinking about itself and other minds, such as the view of mind as a physical space in which ideas have physical locations. Although such views are subjective, it is argued in this chapter that they are nevertheless part of the real nature of the conscious and unconscious mind. In particular, it is conjectured that if a mind entertains a particular (metaphorical) view at a given time, then this activity could of itself cause that mind to become more similar in the short term to how it is portrayed by the view. Hence, the views are, to an extent, self-fulfilling prophecies. In these ways, metaphorical self-reflection, even when distorting and inaccurate, is speculatively an important aspect of the true nature of mind. The chapter also outlines a theoretical approach and related implemented system (ATT-Meta) that were designed for the understanding of metaphorical discourse but that incorporate principles that could be at the core of metaphorical self-reflection in people or future artificial agents.
Introduction: What Questions Are We Addressing?

(a) What is mind?
(b) What are theories of mind?
(c) What could or should computationally implemented architectures and systems based on theories of mind be like?
(d) How should we respond to a particular sort of fragmentation in the study of mind?

In this chapter, these questions are asked from the indirect point of view of how a mind views itself or other minds rather than directly from the theoretical observer’s point of view of determining what the mind really is. As a result, reflection on the above issues (a through d) is roughly as follows, where (a) and (b) have been collapsed together:

(ab2) How does a mind view itself (what kinds of theories does it have about itself); how does it view other minds; and how do these matters interact with the question of what minds really are?

(c2) What could or should computationally implemented architectures and systems involving minds’ views of minds be like?

(d2) How should we respond to a particular sort of fragmentation in minds’ views of minds?

The move to these issues from Issues a through d might be thought to be twisting the latter too far. But behind ab2 is a claim that how a mind views itself is part of, and can affect, the real nature of that mind itself. After all, one important aspect of a mind is its process of thinking (consciously or unconsciously) about itself. How it views itself is then a bald fact about that mind. For instance, to make the point vividly, it may view itself as being a physical being trapped inside the body and able to have a life outside that body if only it could get out. Theories of mind must take into account the views and theories that minds have about themselves and each other, even if they are highly inaccurate or irrational. If a mind thought it was made out of fire and water, then the fact that it thought that is an important fact about that mind, even though it is not actually made out of fire and water.

But, more deeply, the author will claim that a view that a mind has of its own nature at some particular time can, so to speak, entrain that mind to become, at
Related Content

Comparing Learning Methods
[www.irma-international.org/article/comparing-learning-methods/3889/](www.irma-international.org/article/comparing-learning-methods/3889/)

The CHREST Architecture for a Functioning Mind
[www.irma-international.org/chapter/chrest-architecture-functioning-mind/31025/](www.irma-international.org/chapter/chrest-architecture-functioning-mind/31025/)

Random Processes and Visual Perception: Stochastic Art
[www.irma-international.org/chapter/random-processes-and-visual-perception/127479/](www.irma-international.org/chapter/random-processes-and-visual-perception/127479/)

Autonomic Computing for a Complex Problem of Experimental Physics
Tadeusz Wibig (2012). *Developments in Natural Intelligence Research and Knowledge Engineering: Advancing Applications* (pp. 97-107).
[www.irma-international.org/chapter/autonomic-computing-complex-problem-experimental/66441/](www.irma-international.org/chapter/autonomic-computing-complex-problem-experimental/66441/)

Modeling Field Theory of Higher Cognitive Functions
[www.irma-international.org/chapter/modeling-field-theory-higher-cognitive/5245/](www.irma-international.org/chapter/modeling-field-theory-higher-cognitive/5245/)