
DOI: 10.4018/JDM.299559

Journal of Database Management
Volume 33 • Issue 1

﻿
Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

*Corresponding Author

1

ABSTRACT

Software testing is becoming more critical to ensure that software functions properly. As the time,
effort, and funds invested in software testing activities have been increased significantly, these
resources still cannot meet the increasing demand of software testing. Managers must allocate
testing resources to the test cases effectively in uncovering important defects. This study builds a
value function that can quantify the relative value of a test case and thus play a significant role in
prioritizing test cases, addressing the resource constraint issues in software testing and serving as
a foundation of AI for software testing. The authors conducted a Monte Carlo simulation to exhibit
application of the final value function.

Keywords
Case Study, Resource Constraint, Simulation, Software Testing

INTRODUCTION

As software applications permeate everywhere in the world, people are becoming more sensitive to the
validity and reliability of software applications (Juristo et al., 2006). Defects in software applications
may result in tremendous financial loss and even innocent death (Felderer & Ramler, 2014). According
to a report by Tricentis, a leading company providing software testing solutions, about 606 major
software failures from 314 companies occurred throughout the world in 2017. These failures caused
$1.7 trillion in financial losses, resulted in 268 years of cumulative unplanned downtime, and affected
3.6 billion people (Tricentis, n.d.). Billions of dollars are invested in software development every year
around the world, and approximately 50 percent of the total elapsed time and more than 50 percent
of the total costs are expended in testing the program or system being developed in a typical software
development project (Boehm & Papaccio, 1988; Hailpern & Santhanam, 2002; Harrold, 2000; Myers
et al., 2011). Despite the fact that software testing has been considered as an important phase in the
software development life cycle to assure software quality, defects still cannot be entirely eradicated
due to inadequate testing (Tricentis, n.d.; Whittaker, 2000).

Inadequate software testing usually results in defective applications and negative outcomes.
Inspired by Whittaker’s (2000) study, we identified five primary software testing practical issues

A Quantitative Function for Estimating the
Comparative Values of Software Test Cases
Yao Shi, University of North Carolina Wilmington, USA*

Mark L. Gillenson, University of Memphis, USA

Xihui Zhang, University of North Alabama, USA

Journal of Database Management
Volume 33 • Issue 1

2

(untested code, untested combinations of input values, untested paths, untested operating environments,
and defective testing procedures) that cause inadequate software testing. These five testing issues
are rooted in resource constraints and technical constraints in software testing. On the one hand, a
company might not have adequate resources such as budget, time, or personnel to run sufficient tests.
On the other hand, a company might have enough resources but not have key technical support such
as sophisticated algorithms, powerful testing tools, or expert testing engineers, resulting in defective
testing procedures. Considering that most practical software testing issues result from resource
constraints, we therefore focus on exploring the comparative value of software test cases in this study.
The issue is that in a resource constrained testing environment, it is imperative for companies to
choose the most valuable test cases to make their testing efforts as effective and efficient as possible.
We believe that determining the most valuable test cases will help alleviate the resource constraints
issues and thus dramatically improve the testing process.

Given that exhaustive software testing is impossible (Myers et al., 2011), maximizing the
efficiency and effectiveness of software testing with limited resources becomes an important question
in the software testing domain (Juristo et al., 2006). Although researchers have attempted to solve
the problem of resource constraints in software testing from different perspectives in the last few
decades (e.g., Biffl et al., 2006; Boehm, 2006; Felderer & Ramler, 2014; Wohlin & Aurum, 2006), the
shortcomings of the prior studies indicate that the existing approaches cannot appropriately address
the problem. This is because the software testing methods either lag behind software development
methods or just take into account software engineering factors which cannot provide adequate guidance
for improving software testing (Juristo et al., 2006; Talby et al., 2006).

Therefore, the research objective of this study is to explore a new mechanism involving the
comparative value of test cases to increase the efficiency and effectiveness of software testing.
This will be both a risk-based and cost-based approach to value estimation. Since test cases are
at the core of software testing, all else being equal, choosing the highest value test cases can
optimize software testing in a resource constrained environment (Biffl et al., 2006). To address the
research objective, we intend to develop a function that assigns a relative value to a test case for
the purpose of comparing it with the values of other test cases. This will result in the choice of the
most effective test cases for a single application or the most effective set of test cases across a set
of applications. We therefore initiate the research question surrounding the evaluation of software
test cases: What is the relative value of a functional test case in software testing? It is important to
point out that this is groundbreaking research. To our knowledge, no one has ever before attempted
to assign comparative risk and cost-based numerical values to software test cases for the purpose of
choosing the most effective and efficient test cases in a resource constrained testing environment.
Furthermore, the quantitative function for assigning a comparative numerical value to a test case
that we have developed was derived in a novel fashion from qualitative research.

RESEARCH FOUNDATION

Nature of Value in Software Test Cases
First, as a part of software testing, designing test cases is about creating inputs and predicting their
associated outputs (Hass, 2014). Test cases create value in mitigating risks which can emerge as
program defects. One can argue that some test cases are more valuable than others. For example,
if a program is designed to be executed in different operating systems, the test cases for testing
such compatibility are more valuable than those that work in a single operating system (Cohen et
al., 2003).

Second, software testing, including the creation of test cases, is not free of charge. All companies
attempt to decrease cost (e.g., software testing cost, cost of creating test cases) and increase benefit
(e.g., application accuracy and reliability) when they develop a program. Therefore, the value of

31 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/a-quantitative-function-for-estimating-the-

comparative-values-of-software-test-cases/299559

Related Content

Analyzing and Comparing Ontologies with Meta-Models
Islay Davies, Peter Green, Simon Miltonand Michael Rosemann (2005). Information

Modeling Methods and Methodologies: Advanced Topics in Database Research (pp.

1-16).

www.irma-international.org/chapter/analyzing-comparing-ontologies-meta-models/23006

XTEngine: A Twin Search Engine for XML
Kamal Taha (2011). Theoretical and Practical Advances in Information Systems

Development: Emerging Trends and Approaches (pp. 174-213).

www.irma-international.org/chapter/xtengine-twin-search-engine-xml/52957

Privacy-Preserving Contact Tracing for Curbing the Spread of Infectious

Disease
Hui Liand Yifei Zhu (2023). Journal of Database Management (pp. 1-17).

www.irma-international.org/article/privacy-preserving-contact-tracing-for-curbing-the-spread-of-

infectious-disease/324075

NetCube: Fast, Approximate Database Queries Using Bayesian Networks
Dimitris Margaritis, Christos Faloutsosand Sebastian Thrun (2009). Selected

Readings on Database Technologies and Applications (pp. 471-489).

www.irma-international.org/chapter/netcube-fast-approximate-database-queries/28567

Managing Temporal Data
Abdullah Uz Tansel (2009). Handbook of Research on Innovations in Database

Technologies and Applications: Current and Future Trends (pp. 28-36).

www.irma-international.org/chapter/managing-temporal-data/20685

http://www.igi-global.com/article/a-quantitative-function-for-estimating-the-comparative-values-of-software-test-cases/299559
http://www.igi-global.com/article/a-quantitative-function-for-estimating-the-comparative-values-of-software-test-cases/299559
http://www.igi-global.com/article/a-quantitative-function-for-estimating-the-comparative-values-of-software-test-cases/299559
http://www.irma-international.org/chapter/analyzing-comparing-ontologies-meta-models/23006
http://www.irma-international.org/chapter/xtengine-twin-search-engine-xml/52957
http://www.irma-international.org/article/privacy-preserving-contact-tracing-for-curbing-the-spread-of-infectious-disease/324075
http://www.irma-international.org/article/privacy-preserving-contact-tracing-for-curbing-the-spread-of-infectious-disease/324075
http://www.irma-international.org/chapter/netcube-fast-approximate-database-queries/28567
http://www.irma-international.org/chapter/managing-temporal-data/20685

