Journal of Database Management
Volume 33 - Issue 1

HyTM-AP Hybrid Transactional Memory
Scheme Using Abort Prediction

and Adaptive Retry Policy for Multi-
Core In-Memory Databases

Hyeong-Jin Kim, Chonbuk National University, South Korea
Hyun-Jo Lee, Chonbuk National University, South Korea
https://orcid.org/0000-0002-1316-6822

Yong-Ki Kim, Vision College of Jeonju, South Korea
https://orcid.org/0000-0003-3828-5980

Jae-Woo Chang, Chonbuk National University, South Korea*

ABSTRACT

Recently, works on integrating HTM with STM, called hybrid transactional memory (HyTM), have
been intensively studied. However, the existing works consider only the prediction of a conflict
between two transactions and provide a static HTM configuration for all workloads. To solve the
problems, the authors propose a hybrid transactional memory scheme based on both abort prediction
and an adaptive retry policy, called HyTM-AP. First, the HyTM-AP can predict not only conflicts
between concurrently running transactions, but also the capacity and other aborts of transactions by
collecting the information of transactions previously executed. Second, the HyTM-AP can provide an
adaptive retry policy based on machine learning algorithms, according to the characteristic of a given
workload. Finally, through the experimental performance analysis using the STAMP benchmark, the
HyTM-AP shows 12~13% better performance than the existing HyTM schemes.

KEYWORDS
Concurrency Control, HTM, Multi-Core In-Memory Database, STM, Transactional Memory

1. INTRODUCTION

Parallel query processing algorithms have recently been studied for efficient database management,
such as spatial database, skyline computation and data warehousing (Andrzejewski & Boinski, 2015;
Endres & KieBling, 2015; Bellatreche, Cuzzocrea, & Benkrid, 2012). For parallel algorithms, a lock is a
well-known synchronization mechanism used for shared memory in multithreaded programs. However,
developing software that correctly uses locks is notoriously challenging; therefore, transactional
memory (TM) has been proposed as an attractive alternative to lock-based synchronization schemes
(Herlihy & Moss, 1993). Unlike lock-based approaches, where programmers identify shared data and

DOI: 10.4018/JDM.299555 *Corresponding Author

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Journal of Database Management
Volume 33 - Issue 1

specify how to synchronize concurrent access to it, the TM paradigm needs only to identify which
portions of the code must be executed atomically, instead of considering how atomicity should be
achieved (Pankratius & AdI-Tabatabai, 2011). TM can be classified into two categories: software
transactional memory (STM), where transactions are implemented in the software, and hardware
transactional memory (HTM), where transactions are implemented in the cache. STM tends to
perform poorly at low or medium threads, as compared with fine-grained locking techniques. On
the other hand, HTM has been developed to manage conflicts between transactions on multithreads
using a cache coherence protocol.

HTM is very efficient, but has some restrictions. First, the size of a transaction is limited to the
HTM. The Intel Haswell architecture is limited to the size of the L1 cache (256 KB). This implies that
it is impossible to execute a database transaction as an HTM transaction. Second, when a transaction
fails due to conflicts, the cache can be cleared by the operating system (OS) using context switching
in the quantum cycle. Thus, large-sized transactions might be aborted at any time. Finally, because
HTM has a best-effort nature, Intel’s RTM (Restricted Transactional Memory) does not guarantee that
transactions will ever commit in hardware, even in the absence of conflicts. Therefore, programmers
must provide a software fallback path in case of a hardware transaction abort.

To overcome these limitations, hybrid transactional memory (HyTM), the integration of HTM
with STM, has been intensively studied. HyTM processes read-only or short transactions using HTM,
while long transactions are processed using STM. First, Dalessandro et al. (2011) proposed a hybrid
version of the efficient NOrec STM (Dalessandro, Spear, & Scott, 2010), called Hybrid NOrec. The
NOrec STM requires minimal instrumentation to ensure the consistency of active transactions for
validation. When a transaction fails during its execution using HTM, the Hybrid NOrec goes into
a software-based fallback path. Second, Calciu, Gottschlich, Shpeisman, Herlihy, & Pokam (2014)
proposed a hybrid transactional memory (Invyswell) that uses Intel’s RTM as the HTM and the
modified version of STM (Dalessandro, Spear, & Scott). When a hardware transaction fails, Invyswell
uses a software-based fallback path. This process is described in more detail in Section 2.3.

However, the existing HyTM schemes have the following limitations. First, they do not support
the abort prediction of transactions. Even though two concurrent transactions have a high conflict
probability, they attempt to execute transactions using HTM as many times (as a given number of
retries) before forwarding transactions to STM or a serial execution. Thus, it causes the degradation of
overall transaction execution performance. Second, they do not provide the optimal HTM parameter
setting for various types of workloads. Third, they do not provide an efficient memory management
technique because the memory pool for memory allocation/free is used based on a lock mechanism
to process transactions. As a result, the efficiency of transaction processing degrades as the number
of threads in the multi-core in-memory database increases.

To address this problem, we propose a hybrid transactional memory scheme based on both abort
prediction and an adaptive retry policy for multi-core in-memory databases. In in-memory databases,
there are various types of workloads that have multiple attributes and properties. For example, because
a generic application generally contains short transactions that perform complex computations, the
application requires a smaller number of retries. On the other hand, a K-means clustering algorithm
requires a large number of retries for stable performance. Hence, a solution with a static configuration
cannot yield the best performance across all possible workloads.

Thus, our study was undertaken and provides the following contributions:

e  We propose a hybrid transactional memory scheme based on both abort prediction and adaptive
retry policy (called HyTM-ARP) for multi-core in-memory databases.

e  We provide an abort prediction algorithm that predicted not only conflicts between concurrently
running transactions, but also the capacity and other aborts of transactions.

e  We provide a near-optimal HTM configuration setting using an adaptive retry policy based on
machine learning algorithms, according to the characteristics of a given workload.



20 more pages are available in the full version of this
document, which may be purchased using the "Add to Cart"
button on the publisher's webpage: www.igi-
global.com/article/hytm-ap-hybrid-transactional-memory-

scheme-using-abort-prediction-and-adaptive-retry-policy-for-

multi-core-in-memory-databases/299555

Related Content

Evaluating XML-Extended OLAP Queries Based on Physical Algebra
Xuepeng Yinand Torben Bach Pedersen (2009). Database Technologies: Concepts,
Methodologies, Tools, and Applications (pp. 2510-2542).
www.irma-international.org/chapter/evaluating-xml-extended-olap-queries/8049

The Impact of Network Layer on the Deadline Assignment Strategies in
Distributed Real-Time Database Systems

Victor C.S. Lee, Kam-Yiu Lam, Kwok-Wa Lamand Joseph K.Y. Ng (1996). Journal of
Database Management (pp. 24-33).
www.irma-international.org/article/impact-network-layer-deadline-assignment/51163

A Space-Efficient Protocol for Consistency of External View Maintenance on
Data Warehouse Systems: A Proxy Approach

Shi-Ming Huang, David C. Yenand Hsiang-Yuan Hsueh (2007). Journal of Database
Management (pp. 21-47).
www.irma-international.org/article/space-efficient-protocol-consistency-external/3373

Privacy in Multidimensional Databases

Francesco M. Malvestutoand Marina Moscarini (2003). Multidimensional Databases:
Problems and Solutions (pp. 310-360).
www.irma-international.org/chapter/privacy-multidimensional-databases/26973

Intrusion Detection System for loE-Based Medical Networks

Parul Lakhotia, Rinky Dwivedi, Deepak Kumar Sharmaand Nonita Sharma (2023).
Journal of Database Management (pp. 1-18).
www.irma-international.org/article/intrusion-detection-system-for-ioe-based-medical-
networks/321465



http://www.igi-global.com/article/hytm-ap-hybrid-transactional-memory-scheme-using-abort-prediction-and-adaptive-retry-policy-for-multi-core-in-memory-databases/299555
http://www.igi-global.com/article/hytm-ap-hybrid-transactional-memory-scheme-using-abort-prediction-and-adaptive-retry-policy-for-multi-core-in-memory-databases/299555
http://www.igi-global.com/article/hytm-ap-hybrid-transactional-memory-scheme-using-abort-prediction-and-adaptive-retry-policy-for-multi-core-in-memory-databases/299555
http://www.igi-global.com/article/hytm-ap-hybrid-transactional-memory-scheme-using-abort-prediction-and-adaptive-retry-policy-for-multi-core-in-memory-databases/299555
http://www.irma-international.org/chapter/evaluating-xml-extended-olap-queries/8049
http://www.irma-international.org/article/impact-network-layer-deadline-assignment/51163
http://www.irma-international.org/article/space-efficient-protocol-consistency-external/3373
http://www.irma-international.org/chapter/privacy-multidimensional-databases/26973
http://www.irma-international.org/article/intrusion-detection-system-for-ioe-based-medical-networks/321465
http://www.irma-international.org/article/intrusion-detection-system-for-ioe-based-medical-networks/321465

