Chapter 8

An Attributional Analysis of the Rejection of Information Technology

John W. Henry
Georgia Southern University, USA

Mark J. Martinko
Florida State University, USA

The major relationships depicted by attributional models of the process by which individuals accept or reject new information technologies were tested with path analyses in a field setting. The results confirmed that attributions regarding ability were directly related to efficacy expectations, whereas attributions regarding task difficulty and effort were related to outcome expectations. The results further confirmed that both efficacy and outcome expectations were directly related to outcomes including both job performance and end-user satisfaction. In addition, the research showed how attributions affected outcome measures indirectly through expectations.

The factors associated with the successful introduction of New Information Technologies (NITs) are well known and include user involvement (Baroudi, Olson, & Ives, 1986; Boland, 1978; Debrahander & Edstrom, 1977; Mankin, Bikson, & Gutek, 1985; Tait & Vessey, 1988), top management support (Leonard-Barton, 1988; Zmud, 1984), training (Glass & Knight, 1988), and realistic user expectations (Ginzberg, 1981; Martinko, Henry, & Zmud, 1996; Salloway, Counte, & Kjerulf, 1987). Specifically, NIT refers to any product, introduced for the first time to the end user, whose underlying technological base is comprised of computer or communications hardware and software (Cooper & Zmud, 1990).

Because these factors have been identified, it would seem that there would be little resistance to the implementation of NITs. Unfortunately, this is not the case and difficulties associated with introducing and training end-users on NITs in the work place have been
thoroughly chronicled (Argyris, 1971; Blackler & Brown, 1985; Cancro & Slotnick, 1970; Compeau, Olfman, Sein, & Webster, 1995; Dowling, 1980; Meier, 1985; Rosen, Sears, & Weil, 1987). However, as of yet, there does not appear to be any well-accepted or documented integrative explanation of the variables and the dynamics by which end-users decide to accept or reject NITs.

The purpose of this chapter is to address the needs identified above by both proposing and testing an attributional model of the dynamic process that determines end-user acceptance or rejection of NITs.

TOWARD A COMPREHENSIVE MODEL

Recently, several authors have proposed attributional explanations of the behavioral dynamics encountered by end-users when accepting or rejecting NITs (Henry, Martinko, & Pierce, 1993; Martinko, Henry, & Zmud, 1996). All of these explanations draw heavily on Weiner’s (1979) work on achievement motivation as well as the work of Martinko and Gardner (1982) and Abramson, Seligman, and Teasdale (1978) describing the role of attributions in Learned Helplessness (LH). While there are some minor variations in the models and the explanations which have been proposed, the dynamics depicted in Figure 1 are representative of the relationships which have been described.

Essentially, the model depicts acceptance and rejection behavior as a function of user expectations. The predictive validity of expectations has been tested in previous studies (Henry & Stone, 1995a). These expectations are formed from users’ attributions regarding the likely causes of their successes and failures in interacting with the NIT. The attributions are also influenced by the characteristics of the NIT as well as any similar experiences that the user may have had with other NIT implementations. In addition, individual dispositional differences such as attributional style are also proposed to influence user attributions.

Based on the LH model (Abramson, Seligman, & Teasdale, 1978; Martinko & Gardner, 1982), the following chains of relationships are predicted for acceptance versus rejection of
Related Content

Autonomous Execution of Reliable Sensor Network Applications on Varying Node Hardware
www.irma-international.org/chapter/autonomous-execution-of-reliable-sensor-network-applications-on-varying-node-hardware/117943/

Enhancing Security and Trust in Named Data Networking using Hierarchical Identity Based Cryptography

On the Accelerated Convergence of Genetic Algorithm Using GPU Parallel Operations
www.irma-international.org/article/on-the-accelerated-convergence-of-genetic-algorithm-using-gpu-parallel-operations/133111/

Managing the Quality of UML Models in Practice
www.irma-international.org/chapter/managing-quality-uml-models-practice/26823/

Model Expansion in Model-Driven Architectures
www.irma-international.org/chapter/model-expansion-model-driven-architectures/65166/