
98

Chapter VI
Novel Methods of Incorporating

Security Requirements
Engineering into Software
Engineering Courses and

Curricula
Nancy R. Mead

Software Engineering Institute, USA

Dan Shoemaker
University of Detroit Mercy, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

This chapter describes methods of incorporating security requirements engineering into software engi-
neering courses and curricula. The chapter discusses the importance of security requirements engineering
and the relationship of security knowledge to general computing knowledge by comparing a security
body of knowledge to standard computing curricula. Then security requirements is related to standard
computing curricula and educational initiatives in security requirements engineering are described, with
their results. An expanded discussion of the SQUARE method in security requirements engineering case
studies is included, as well as future plans in the area. Future plans include the development and teaching
of academic course materials in security requirements engineering, which will then be made available
to educators. The authors hope that more educators will be motivated to teach security requirements
engineering in their software engineering courses and to incorporate it in their curricula.

Introduction

Exploitable defects in software pose a threat to
both our national security and our way of life.
That is because our critical infrastructure is en-

abled by information technology (PITAC, 2005).
Nevertheless, even though software plays a pivotal
role in ensuring every sector of our economy, the
President’s Information Technology Advisory
Council (PITAC) found that “commonly used

 99

Novel Methods of Incorporating Security Requirements Engineering into Software Engineering Courses and Curricula

software engineering practices permit danger-
ous defects, which let attackers compromise
millions of computers every year” (PITAC,
2005, p. 39).

Most defects are the result of programming or
design errors (Jones, 2005). And such defects do
not have to be identified or actively exploited in
order to be a threat (Redwine, 2006). Yet, given
that unfortunate fact, PITAC still found that “cur-
rent commercial software engineering lacks the
rigorous controls needed to [ensure defect free]
products at acceptable cost” (PITAC, 2005, p.
39). And even worse, “In the future, the nation
may face even more challenging problems as ad-
versaries—both foreign and domestic—become
increasingly sophisticated in their ability to insert
malicious code into critical software” (Redwine,
2006, p. xiv).

In fiscal terms, the exploitation of defects
costs the U.S. economy an average of $60 billion
dollars per year (Newman, 2002). However, the
real concern lies in the fact that the exploitation
of a flaw in the software that underlies basic
infrastructure services like power and com-
munication could cause a significant national
disaster. The Critical Infrastructure Taskforce
sums up that likelihood in a single statement:
“The nation’s economy is increasingly dependent
on cyberspace. This has introduced unknown
interdependencies and single points of failure. A
digital disaster strikes some enterprise every day,
[and] infrastructure disruptions have cascading
impacts, multiplying their cyber and physical
effects” (Clark, 2002, p. 6).

The generally acknowledged solution to the
problem of exploitable defects is more secure
practice in every aspect of the acquisition, develop-
ment, and sustainment of software and software
artifacts. Nonetheless, “informed consumers have
growing concerns about the scarcity of practitio-
ners with requisite competencies to build secure
software” (Redwine, 2006, p. xiii).

Because of the key importance of capable prac-
titioners and the general lack of proper prepara-

tion, The National Strategy to Secure Cyberspace
– Action/ Recommendation 2-14 has mandated
the Department of Homeland Security (DHS) to
“promulgate best practices and methodologies
that promote integrity, security, and reliability in
software code development, including processes
and procedures that diminish the possibilities of
erroneous code, malicious code, or trap doors
that could be introduced during development”
(NIAC, 2003, p. 35).

It would seem to be a simple task to “identify
the necessary workforce competencies, leverage
sound practices, and guide curriculum devel-
opment for education and training relevant to
software assurance” (Redwine, 2006, p. xiv.).
However, the problem is that security is not a
mature field, and so the teaching of security
topics is done in a number of disjointed places
within higher education. That includes “software
engineering, systems engineering, information
systems security engineering, safety, security,
testing, information assurance, and project man-
agement” (Redwine, 2006, p. xiv).

Coherent knowledge about “software as-
surance processes and practices has yet to be
integrated into the body of knowledge of the
contributing disciplines” (Redwine, 2006, p. xiv).
Too often, the result of this lack of integration is
the graduation of a software engineering student
who develops buggy code with weak security
measures.

It is both impractical and impossible to sim-
ply drop the whole body of software assurance
knowledge into a traditional computer curricu-
lum. Therefore it is necessary to adopt a focused
strategy and a clear starting point. One of the
logical places to start the integration process is
in an area that is vital to good security practice,
but which is also well established and important
to general development. That is security require-
ments engineering.

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/novel-methods-incorporating-security-

requirements/29595

Related Content

Model-Driven Applications: Using a Model-Driven Mechanism to Bridge the Gap between

Business and IT
Tong-Ying Yu (2014). Advances and Applications in Model-Driven Engineering (pp. 53-72).

www.irma-international.org/chapter/model-driven-applications/78610

Conclusions and Recommendations for Further Research of Large-Scale Fuzzy Interconnected

Control Systems
 (2017). Large-Scale Fuzzy Interconnected Control Systems Design and Analysis (pp. 213-218).

www.irma-international.org/chapter/conclusions-and-recommendations-for-further-research-of-large-scale-fuzzy-

interconnected-control-systems/181993

Recognition of Handwritten Hindi Text Using Middle Region of the Words
Naresh Kumar Garg, Lakhwinder Kaurand M. K. Jindal (2015). International Journal of Software Innovation

(pp. 62-71).

www.irma-international.org/article/recognition-of-handwritten-hindi-text-using-middle-region-of-the-words/133115

Model-Based Testing of Distributed Functions
Thomas Bauerand Robert Eschbach (2012). Advanced Automated Software Testing: Frameworks for

Refined Practice (pp. 151-181).

www.irma-international.org/chapter/model-based-testing-distributed-functions/62155

Determining Optimal Release and Testing Stop Time of a Software Using Discrete Approach
Avinash K. Shrivastavaand Ruchi Sharma (2022). International Journal of Software Innovation (pp. 1-13).

www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-

approach/297920

http://www.igi-global.com/chapter/novel-methods-incorporating-security-requirements/29595
http://www.igi-global.com/chapter/novel-methods-incorporating-security-requirements/29595
http://www.irma-international.org/chapter/model-driven-applications/78610
http://www.irma-international.org/chapter/conclusions-and-recommendations-for-further-research-of-large-scale-fuzzy-interconnected-control-systems/181993
http://www.irma-international.org/chapter/conclusions-and-recommendations-for-further-research-of-large-scale-fuzzy-interconnected-control-systems/181993
http://www.irma-international.org/article/recognition-of-handwritten-hindi-text-using-middle-region-of-the-words/133115
http://www.irma-international.org/chapter/model-based-testing-distributed-functions/62155
http://www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-approach/297920
http://www.irma-international.org/article/determining-optimal-release-and-testing-stop-time-of-a-software-using-discrete-approach/297920

