3430

Chapter 8.15
Heuristics and Metrics for
OO Refactoring:

A Consolidation and Appraisal of
Current Issues

Steve Counsell
Brunel University, UK

Youssef Hassoun
University of London, UK

Deepak Advani
University of London, UK

ABSTRACT

Refactoring, as a software engineering disci-
pline, has emerged over recent years to become
an important aspect of maintaining software.
Refactoring refers to the restructuring of software
according to specific mechanics and principles.
While in theory there is no doubt of the benefits
of refactoring in terms of reduced complexity and
increased comprehensibility of software, there are
numerous empirical aspects of refactoring which
have yet to be addressed and many research ques-
tions which remain unanswered. In this chapter,
we look at some of the issues which determine

when to refactor (i.e., the heuristics of refactor-
ing) and, from a metrics perspective, open issues
with measuring the refactoring process. We thus
point to emerging trends in the refactoring arena,
some of the problems, controversies, and future
challenges the refactoring community faces. We
hence investigate future ideas and research po-
tential in this area.

INTRODUCTION

One of the key software engineering disciplines
to emerge over recent years is that of refactoring

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Heuristics and Metrics for OO Refactoring

(Foote & Opdyke, 1995; Fowler, 1999; Hitz &
Montazeri, 1996; Opdyke, 1992). Broadly speak-
ing, refactoring can be defined as a change made
to software in order to improve its structure.
The potential benefits of undertaking refactor-
ing include reduced complexity and increased
comprehensibility of the code. Improved compre-
hensibility makes maintenance of that software
relatively easy and thus provides both short-term
and long-term benefits. In the seminal text on the
area, Fowler (1999) suggests that the process of
refactoring is the reversal of software decay and,
inthis sense, any refactoring effortis worthwhile.
Ironically, Fowler also suggests that one reason
why developers do not tend to undertake refactor-
ing is because the perceived benefits are too “long
term.” Despite the attention that refactoring has
recently received, a number of open refactoring
issues have yet to be tackled and, as such, are
open research concerns. In this chapter, we look
at refactoring from two perspectives.

This first perspective relates to the heuristics
by which refactoring decisions can be made. Given
that a software system is in need of restructuring
effort(i.e., itis showing signs of deteriorating reli-
ability), IS project staff are faced with a number
of competing choices. To illustrate the dilemma,
consider the question of whether completion of
a large number of small refactorings is more
beneficial than completion of a small number of
large refactorings. A good example of the former
type of refactoring would be a simple “rename
method,” where the name of a method is changed
to makes its purpose more obvious. This type of
refactoringis easily done. An example of the latter,
more involved refactoring, would be an “extract
class” refactoring where a single class is divided
to become two. This type of refactoring may be
more problematic because of the dependencies of
the original class features.

Aswellasthe decision as to “what” to refactor,
we also look at the equally important decision as
to “when” we should refactor. Throughout all of

our analysis, weneed to bear in mind that refactor-
ing offers only a very small subset of the possible
changes a system may undergo at any point in its
lifetime. We return to this theme later on.

Combined with theneed to choose refactorings
and the timing ofthose refactorings, the need to be
able to measure the refactoring processis also im-
portant. Software metrics (Fenton, 1996) provide
a mechanism by which this can be achieved. A
metric can defined as any quantifiable or qualita-
tive value assigned to an attribute of a software
artefact. The second perspective thus relates to the
type of metric applicable for determining firstly,
whether arefactoring is feasible, which of compet-
ing refactorings are most beneficial and how the
effects of carrying out refactoring have impacted
on the software after it has been completed. In
terms of “when” to refactor, a metrics program
implemented by an organization may provide
information on the most appropriate timing of
certainrefactorings according to metric indicators
as, for example, a rapid and unexplained rise in
change requests.

For both perspectives investigated, there are
a large number of issues which could possibly
influence their role in the refactoring process.
For example, most refactorings can at best only
be achieved through a semi-automated process.
For example, the decision on how to split one
class into two can only be made by a developer
(and aided by tool support once that decision
has been made). Some metrics are subject to
certain threats to their validity and are thus are
largely inappropriate for judging the effect of a
refactoring; the lines of code (LOC) metric is a
good example of such a metric because of the
unclear definition of exactly what a line of code
is (Rosenberg, 1997). In our analysis, we need to
consider these issues.

The objectives of the chapter are three-fold.
Firstly, to highlight the current open issues in
the refactoring field. In particular, some of the
associated problems that may hamper or influence

3431



23 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/heuristics-metrics-refactoring/29570

Related Content

The Factors Affecting Continuous Usage Intention of Computer-Aided Engineering (CAE)
Software

Yong Won Cho, Dae Sik Kim, Huy Tung Phuongand Gwangyong Gim (2022). International Journal of
Software Innovation (pp. 1-13).

www.irma-international.org/article/the-factors-affecting-continuous-usage-intention-of-computer-aided-engineering-cae-

software/297508

Disciplined or Agile?: Two Approaches for Handling Requirement Change Management

Danyllo Wagner Albuquerque, Everton Tavares Guimaraes, Felipe Barbosa Aratjo Ramos, Antonio
Alexandre Moura Costa, Alexandre Gomes, Emanuel Dantas, Mirko Perkusichand Hyggo Almeida (2021).
Balancing Agile and Disciplined Engineering and Management Approaches for IT Services and Software
Products (pp. 130-150).

www.irma-international.org/chapter/disciplined-or-agile/259175

Implementation of Enterprise Resource Planning (ERP) Systems in the Gig Economy:
Revolutionizing the Digital Transformation

Aastha Behl, K. Rajagopaland Pratima Sheorey (2021). International Journal of Information System
Modeling and Design (pp. 21-41).
www.irma-international.org/article/implementation-of-enterprise-resource-planning-erp-systems-in-the-gig-
economy/288554

Proxy-Monitor: An Integration of Runtime Verification with Passive Conformance Testing
Sébastien Salvaand Tien-Dung Cao (2014). International Journal of Software Innovation (pp. 20-42).
www.irma-international.org/article/proxy-monitor/119988

Modeling Context-Aware Distributed Event-Based Systems

Eduardo S. Barrenechea, Rolando Blancoand Paulo Alencar (2012). Handbook of Research on Mobile
Software Engineering: Design, Implementation, and Emergent Applications (pp. 82-94).
www.irma-international.org/chapter/modeling-context-aware-distributed-event/66461



http://www.igi-global.com/chapter/heuristics-metrics-refactoring/29570
http://www.irma-international.org/article/the-factors-affecting-continuous-usage-intention-of-computer-aided-engineering-cae-software/297508
http://www.irma-international.org/article/the-factors-affecting-continuous-usage-intention-of-computer-aided-engineering-cae-software/297508
http://www.irma-international.org/chapter/disciplined-or-agile/259175
http://www.irma-international.org/article/implementation-of-enterprise-resource-planning-erp-systems-in-the-gig-economy/288554
http://www.irma-international.org/article/implementation-of-enterprise-resource-planning-erp-systems-in-the-gig-economy/288554
http://www.irma-international.org/article/proxy-monitor/119988
http://www.irma-international.org/chapter/modeling-context-aware-distributed-event/66461

