
 2831

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.13
Legal and Economic

Justification for Software
Protection

Bruno de Vuyst
Vrije Universiteit Brussel, Belgium

Alea Fairchild
Vrije Universiteit Brussel, Belgium

ABSTRACT

This chapter discusses legal and economic ratio-
nale in regards to open source software protection.
Software programs are, under TRIPS1, protected
by copyright (reference is made to the Berne Con-
vention2). The issue with this protection is that,
due to the dichotomy idea/expression that is typical
for copyright protection, reverse engineering of
software is not excluded, and copyright is hence
found to be an insufficient protection. Hence,
in the U.S., software makers have increasingly
turned to patent protection. In Europe, there is
an exclusion of computer programs in Article
52 (2) c) EPC (EPO, 1973), but this exclusion is
increasingly narrowed and some call for aban-
doning the exclusion altogether. A proposal by
the European Commission, made in 2002, called
for a directive to allow national patent authori-

ties to patent software in a broader way, so as to
ensure further against reverse engineering; this
proposal, however, was shelved in 2005 over ac-
tive opposition within and outside the European
parliament. In summary, open source software
does not fit in any proprietary model; rather, it
creates a freedom to operate. Ultimately, there
is a need to rethink approaches to property law
so as to allow for viable software packaging in
both models.

INTRODUCTION

Copyright Protection of Software

A software program is foremost a sequence of
orders and mathematical algorithms emerging
from the mind of the innovator, hence creating

2832

Legal and Economic Justification for Software Protection

a link with copyright law as a prime source of
intellectual property protection.

According to Article 10 TRIPS, computer
programs, whether in source or object code, shall
be protected as literary works under the Berne
Convention provided that they are (1) original and
(2) tangible. In light of Article 9 TRIPS, which
states that copyright protection shall extend to
expressions, but not to ideas, procedures, methods
of operation or mathematical concepts as such,
copyright protects the actual code of the computer
program itself, and the way the instructions have
been drawn up, but not the underlying idea thereof
(Overdijk, 1999).

Hence, an author can protect his original work
against unauthorized copying. Consequently,
an independent creation from another person
would not automatically be seen as a copyright
infringement (Kirsch, 2000a; Leijnse, 2003).
With respect to software programs this could
have as consequence that a person disassembles
and decompiles an existing software program to
determine the underlying idea and uses this idea
to build his own program (reverse engineering).
As he only uses the idea, which is not copyright-
able, no infringement will result.

BACKGROUND

Patent Law Protection of Software

Software is a novel form in the technology world,
and may make a claim to patent protection from
that angle. The conditions to be met to enjoy patent
protection are more stringent than those to enjoy
copyright protection. In Europe3, for example, an
invention will enjoy protection from patent law
provided that the invention (1) is new (i.e., never
been produced before), (2) is based on inventor
activity (i.e., not have been before part of prior
art), and (3) makes a technical contribution (i.e.,
contribute to the state of the art). In the U.S., the
patent requirements to be met are (1) novelty,

(2) non-obviousness, and (3) the innovations
must fall within the statutory class of patentable
inventions.

Pursuant to patent law, a patent holder can
invoke the protection of his patent to exclude
others from making, using or selling the patented
invention. As opposed to copyright protection, the
inventor’s patent is protected regardless whether
the software code of the patented program was
copied or not.

The Evolution of the Legal
Protection of Software

Prior to the 1980s, U.S. courts unanimously
held that software was not patentable and that
its only protection could be found in copyright.
Indeed, the U.S. Supreme Court ruled in two
landmark decisions, Gottschalk vs. Benson (1972)
and Parker vs. Flook (1978), that software was
similar to mathematics and laws of nature (both
excluded from being patented) and, therefore,
was unpatentable.

In Diamond vs. Diehr (1981), however, the
court reversed course, deciding that an invention
was not necessarily unpatentable simply because
it utilized software. Since this decision, U.S.
courts as well as the US Patent Office gradually
broadened the scope of protection available for
software-related inventions (Kirsch, 2000). The
situation evolved to the current status in which it
is expected to obtain a patent for software-related
inventions. Since the State Street Bank and Trust
Co. vs. Signature Financial Group Inc. (1996)
case even mathematical algorithms and business
methods have been found to be patentable (see
also the Amazon One-click case IPXL Holding,
plc vs. Amazon.com, Inc., 2005; Bakels , 2003).
As from this decision, the U.S. focus, for patent-
ability, is “utility based,” which is defined as “the
essential characteristics of the subject matter”
and the key to patentability is the production of
a “useful, concrete and tangible result” (Hart,
Holmes, & Reid, 1999). The evolution resulted in

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/legal-economic-justification-software-

protection/29538

Related Content

Separation of Concerns in Mobile Hypermedia: Architectural and Modeling Issues
Cecilia Challiol, Gustavo Rossi, Silvia E. Gordilloand Andrés Fortier (2012). Handbook of Research on

Mobile Software Engineering: Design, Implementation, and Emergent Applications (pp. 211-233).

www.irma-international.org/chapter/separation-concerns-mobile-hypermedia/66469

Incremental Hierarchical Clustering for Data Insertion and Its Evaluation
Kakeru Narita, Teruhisa Hochin, Yoshihiro Hayashiand Hiroki Nomiya (2020). International Journal of

Software Innovation (pp. 1-22).

www.irma-international.org/article/incremental-hierarchical-clustering-for-data-insertion-and-its-evaluation/248527

The Mythical Lines of Code Metric: A Form of Moral Hazard
Charley Tichenor (2022). Research Anthology on Agile Software, Software Development, and Testing (pp.

987-1001).

www.irma-international.org/chapter/the-mythical-lines-of-code-metric/294505

Computational Intelligence in Cross Docking
Bo Xing (2014). International Journal of Software Innovation (pp. 1-8).

www.irma-international.org/article/computational-intelligence-in-cross-docking/111446

Performance Evaluation of Secure Key Deployment and Exchange Protocol for MANETs
Alastair Nisbetand M. A. Rashid (2013). Developing and Evaluating Security-Aware Software Systems (pp.

205-224).

www.irma-international.org/chapter/performance-evaluation-secure-key-deployment/72206

http://www.igi-global.com/chapter/legal-economic-justification-software-protection/29538
http://www.igi-global.com/chapter/legal-economic-justification-software-protection/29538
http://www.irma-international.org/chapter/separation-concerns-mobile-hypermedia/66469
http://www.irma-international.org/article/incremental-hierarchical-clustering-for-data-insertion-and-its-evaluation/248527
http://www.irma-international.org/chapter/the-mythical-lines-of-code-metric/294505
http://www.irma-international.org/article/computational-intelligence-in-cross-docking/111446
http://www.irma-international.org/chapter/performance-evaluation-secure-key-deployment/72206

