
1701

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 81

DOI: 10.4018/978-1-6684-3702-5.ch081

ABSTRACT

The use of software in mission critical applications poses greater quality needs. Quality assurance
activities are aimed at ensuring such quality requirements of the software system. Antifragility is a
property of software that increases its quality as a result of errors, faults, and attacks. Such antifragile
software systems proactively accepts the errors and learns from these errors and relies on test-driven
development methodology. In this article, an innovative approach is proposed which uses a fault injec-
tion methodology to perform the task of quality assurance. Such a fault injection mechanism makes the
software antifragile and it gets better with the increase in the intensity of such errors up to a point. A
software quality game is designed as a two-player game model with stressor and backer entities. The
stressor is an error model which injects errors into the software system. The software system acts as a
backer, and tries to recover from the errors. The backer uses a cheating mechanism by implementing
software Learning Hooks (SLH) which learn from the injected errors. This makes the software antifragile
and leads to improvement of the code. Moreover, the SLH uses a Q-Learning reinforcement algorithm
with a hybrid reward function to learn from the incoming defects. The game is played for a maximum of
K errors. This approach is introduced to incorporate the anti-fragility aspects into the software system
within the existing framework of object-oriented development. The game is run at the end of every in-
crement during the construction of object-oriented systems. A detailed report of the injected errors and
the actions taken is output at the end of each increment so that necessary actions are incorporated into
the actual software during the next iteration. This ensures at the end of all the iterations, the software is

A Game Theoretic Approach for
Quality Assurance in Software
Systems Using Antifragility-

Based Learning Hooks
 Vimaladevi M.

Pondicherry Engineering College, India

 Zayaraz G.
Pondicherry Engineering College, India

1702

A Game Theoretic Approach for Quality Assurance in Software Systems Using Learning Hooks

1. INTRODUCTION

Software applications are becoming more complex day by day and it is difficult to maintain code quality
and manage the cost of the software development. Some of the factors that make this quality-cost balance
a challenging task needs further discussion. They are the growing pressure on the software organizations,
rise of the developmental costs, need to get the product to market quickly and accelerated development
schedules. The most effective way to keep the development cost down is the minimization and the in-
troduction of defects. The software bug cost of United States economy has increased from $59.5 billion
to $1.1 trillion from 2002 to 2016. This increase in cost is due to the loss in revenue due to the software
being unusable, payments to developers for bug fixing, loss in shareholder value, etc. Also, there are
some indirect financial costs arising due to the problem of brand reputation and customer loyalty. The
bug fixing process even interferes with other developments and enhancements for new functionality
addition that ultimately affect the project schedule. It is critical to catch the defects early since, the cost
of fixing the defects increases exponentially as the software progresses through the life cycle phases.
From the report of National Institute of Standards and Technology (NIST), the increase in the bug fix
follows the trend as shown in Table 1 (National Institute of Standards and Technology, 2002). Here, X
is the normalized unit of cost and can be expressed in terms of person-hours.

Hence, there is an important need for proactive approaches to improve the overall quality and de-
crease the software development cost. This research work discusses such an arrangement to proactively
detect defects by building antifragile characteristics into an object-oriented software within the existing
software development framework. But this defect prevention is a challenging task. The operating envi-
ronment and the kinds of failure and recovery of a software system are highly uncertain and are open
ended. For example, an information report states that the Eclipse development environment runs on at
least 5 million different machines. The developer foreseeing all possible failures is nearly impossible,

immune to majority of the so-called Black Swans. The experiment is conducted with an open source Java
sample and the results are studied selected two categories of evaluation parameters. The defect related
performance parameters considered are the defect density, defect distribution over different iterations,
and number of hooks inserted. These parameters show much reduction in adopting the proposed ap-
proach. The quality parameters such as abstraction, inheritance, and coupling are studied for various
iterations and this approach ensures considerable increases in these parameters.

Table 1. Cost of defect fixing

Design 1X

Implementation 5 X

Integration Testing 10 X

Customer Beta Testing 15 X

Post Product Release 30 X

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-game-theoretic-approach-for-quality-

assurance-in-software-systems-using-antifragility-based-learning-

hooks/294538

Related Content

CTSA: Concurrent Tuple Set Architecture Extending Concurrency to Call Level Interfaces
Óscar Mortágua Pereira, Rui L. Aguiarand Maribel Yasmina Santos (2013). International Journal of

Software Innovation (pp. 12-33).

www.irma-international.org/article/ctsa/103279

Capturing Spotaneous Software Evolution in a Social Coding Platform With Project-as-a-City

Concept
Koji Toda, Haruaki Tamada, Masahide Nakamuraand Kenichi Matsumoto (2020). International Journal of

Software Innovation (pp. 35-50).

www.irma-international.org/article/capturing-spotaneous-software-evolution-in-a-social-coding-platform-with-project-as-a-

city-concept/256235

Closing Service Quality Gaps Using Dynamic Service Level Agreements
Carlos Mendesand Miguel Mira da Silva (2016). International Journal of Information System Modeling and

Design (pp. 48-71).

www.irma-international.org/article/closing-service-quality-gaps-using-dynamic-service-level-agreements/162696

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings
Rohan Sen, Radu Handorean, Gruia-Catalin Romanand Christopher Gill (2005). Service-Oriented Software

System Engineering: Challenges and Practices (pp. 247-269).

www.irma-international.org/chapter/service-oriented-computing-imperatives-hoc/28958

Choosing the Optimized OS for an MPSoC Embedded System
Abderrazak Jemai (2011). Reconfigurable Embedded Control Systems: Applications for Flexibility and

Agility (pp. 434-443).

www.irma-international.org/chapter/choosing-optimized-mpsoc-embedded-system/50438

http://www.igi-global.com/chapter/a-game-theoretic-approach-for-quality-assurance-in-software-systems-using-antifragility-based-learning-hooks/294538
http://www.igi-global.com/chapter/a-game-theoretic-approach-for-quality-assurance-in-software-systems-using-antifragility-based-learning-hooks/294538
http://www.igi-global.com/chapter/a-game-theoretic-approach-for-quality-assurance-in-software-systems-using-antifragility-based-learning-hooks/294538
http://www.irma-international.org/article/ctsa/103279
http://www.irma-international.org/article/capturing-spotaneous-software-evolution-in-a-social-coding-platform-with-project-as-a-city-concept/256235
http://www.irma-international.org/article/capturing-spotaneous-software-evolution-in-a-social-coding-platform-with-project-as-a-city-concept/256235
http://www.irma-international.org/article/closing-service-quality-gaps-using-dynamic-service-level-agreements/162696
http://www.irma-international.org/chapter/service-oriented-computing-imperatives-hoc/28958
http://www.irma-international.org/chapter/choosing-optimized-mpsoc-embedded-system/50438

