
1586

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 75

DOI: 10.4018/978-1-6684-3702-5.ch075

ABSTRACT

Model-driven engineering (MDE) is an approach to software engineering that adopts models as the
central artefact. Although the approach is promising in addressing major issues in software development,
particularly in dealing with software complexity, and there are several success cases in the industry as
well as growing interest in the research community, it seems that it has been hard to generalize its gains
among software professionals. To address this issue, MDE must be taught at a higher-education level.
This chapter presents a three-year experience in teaching MDE in a course of a master program in infor-
matics engineering. The chapter provides details on how a project-based learning approach was adopted
and evolved along three editions of the course. Results of a student survey are discussed and compared
to those from another course. In addition, several other similar teaching experiences are analyzed.

Teaching Model-
Driven Engineering in a

Master’s Program:
Three Editions on a PBL-Based Experience

Alexandre Bragança
Polytechnic Institute of Porto, Portugal

Isabel Azevedo
Polytechnic Institute of Porto, Portugal

Nuno Bettencourt
 https://orcid.org/0000-0003-1767-8240

Polytechnic Institute of Porto, Portugal

1587

Teaching Model-Driven Engineering in a Master’s Program
﻿

INTRODUCTION

During their education, engineers learn about the relevant models in their areas and how to further apply
them. One of the capabilities that students should acquire in programs that qualify for building systems,
where software is a key and intense part, is “create and use models in system development” (Landwehr
et al., 2017).

More intensive use of models has also been adopted for software engineering. Among them is Model-
Driven Engineering (MDE), which promises several ways to address well-known problems (Somers,
2017), including software increasing complexity (Whittle, Hutchinson, & Rouncefield, 2014). Moreover,
it is in line with the usual start of designing complex systems with some level of abstraction provided
by models in traditional engineering disciplines.

In software product lines, substantial gains can be achieved, even for quality assurance, when the ef-
fort is put in the domain engineering instead of solely in the application engineering. In fact, MDE has
been applied successfully in the industry but essentially in large corporations that can afford the inher-
ent costs (Baker, Loh, & Weil, 2005; Burden, Heldal, & Whittle, 2014; Hossler, Born, & Saito, 2006).

However, it seems that MDE’s advantages have been hard to generalize in a way that makes it available
for the common developer (Haan, 2008). Also, companies that already design and use models dedicated
to a particular domain may probably use MDE more than others that develop generic software (Whittle
et al., 2014). Whittle et al. (2014) mentioned an organization that had to train hundreds of developers
with difficulties in abstract thinking when MDE was adopted.

Multiple factors hinder organizations from embracing MDE, and its acceptance clearly requires tech-
nical changes, but also the overcoming of human attitudes when facing new techniques and the need to
use new tools (Brambilla, Cabot, & Wimmer, 2012; Whittle et al., 2017). This aspect was highlighted in
general some years ago (Glass, 2011) with the recognition that there is a learning curve with an initial
low productivity that is acceptable when people realize the value of their adoption. In a Model-Driven
Development (MDD) – which is essentially MDE focused on software development – survey, it has
been found out that “in most cases, the use of the MDD in organisations depends only on the interest of
people to use it” (Parviainen, Takalo, Teppola, & Tihinen, 2009) and people may only be appealed to use
what they have heard about. Nevertheless, new competencies are needed, and their lack can compromise
MDE appropriateness (Christensen & Ellingsen, 2016). Thus, pedagogical and training issues cannot
be ignored (Goulão, Amaral, & Mernik, 2016).

In this context the authors share a three-year experience in teaching Model-Driven Engineering in
a course of a master program in Informatics Engineering, a total of three editions of the course. Each
one can be seen as action research (Lewin, 1946) iteration (see Figure 1) that aimed to analyse if it is
possible to promote MDE subjects using a Project-Based Learning approach. This research question
also reflects the desire to maintain the highest quality standards of the program, which is accredited by
many international bodies. For instance, the American Board for Engineering and Technology (ABET)
accreditation emphasizes the need of continuous improvement of programs. In fact, the reflection on the
appropriateness of the provided learning experiences and pedagogical models has been institutionally
reinforced. The continuous improvement of the course and, consequently, of the program has been the
main motivation for this work. Our expectation is that the introduction of courses devoted to MDE may
have the same impact on software development as Unified Modelling Language (UML) had in the past.

24 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/teaching-model-driven-engineering-in-a-masters-

program/294532

Related Content

Preference Coalition Formation Scheme for Buyer Coalition Services with Bundles of Items
Laor Boongasameand Dickson K. W. Chiu (2012). International Journal of Systems and Service-Oriented

Engineering (pp. 67-84).

www.irma-international.org/article/preference-coalition-formation-scheme-for-buyer-coalition-services-with-bundles-of-

items/78918

Tools for the Study of the Usual Data Sources found in Libre Software Projects
Gregorio Robles, Jesús M. González-Barahona, Daniel Izquierdo-Cortazarand Benjamin E. Erlandson

(2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 1199-1220).

www.irma-international.org/chapter/tools-study-usual-data-sources/29442

Efficient Scheduling of Jobs and Allocation of Resources in Cloud Computing
Sandeep Gajanan Sutarand Kumarswamy S. (2022). International Journal of Software Innovation (pp. 1-

13).

www.irma-international.org/article/efficient-scheduling-of-jobs-and-allocation-of-resources-in-cloud-computing/307013

Model-Driven Configuration of Distributed Real-time and Embedded Systems
Brian Dougherty, Jules Whiteand Douglas C. Schmidt (2011). Model-Driven Domain Analysis and Software

Development: Architectures and Functions (pp. 115-135).

www.irma-international.org/chapter/model-driven-configuration-distributed-real/49156

CODVerif: A Continuous Verification of Service-Oriented Architecture Data
Malik Khalfallahand Parisa Ghodous (2022). International Journal of Systems and Service-Oriented

Engineering (pp. 1-23).

www.irma-international.org/article/codverif/315582

http://www.igi-global.com/chapter/teaching-model-driven-engineering-in-a-masters-program/294532
http://www.igi-global.com/chapter/teaching-model-driven-engineering-in-a-masters-program/294532
http://www.irma-international.org/article/preference-coalition-formation-scheme-for-buyer-coalition-services-with-bundles-of-items/78918
http://www.irma-international.org/article/preference-coalition-formation-scheme-for-buyer-coalition-services-with-bundles-of-items/78918
http://www.irma-international.org/chapter/tools-study-usual-data-sources/29442
http://www.irma-international.org/article/efficient-scheduling-of-jobs-and-allocation-of-resources-in-cloud-computing/307013
http://www.irma-international.org/chapter/model-driven-configuration-distributed-real/49156
http://www.irma-international.org/article/codverif/315582

