
1059

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 53

DOI: 10.4018/978-1-6684-3702-5.ch053

ABSTRACT

The adoption of agility at a large scale often requires the integration of agile and non-agile develop-
ment practices into hybrid software development and delivery environment. This chapter addresses
software testing related issues for Agile software application development. Currently, the umbrella of
Agile methodologies (e.g. Scrum, Extreme Programming, Development and Operations – i.e., DevOps)
have become the preferred tools for modern software development. These methodologies emphasize
iterative and incremental development, where both the requirements and solutions evolve through the
collaboration between cross-functional teams. The success of such practices relies on the quality result
of each stage of development, obtained through rigorous testing. This chapter introduces the principles
of software testing within the context of Scrum/DevOps based software development lifecycle.

INTRODUCTION

The world is witnessing a tremendous influence of software systems in all aspects of personal and
business areas. Software systems are also heavily incorporated in safety-critical applications including
manufacturing machinery, automobiles operation, and industrial process controls. In these applications,
software failure can cause injury or loss of life. The correct behaviour of software is crucial to the safety
and wellbeing of people and business. Consequently, there is an increasing requirement for the applica-
tion of strict engineering discipline to the development of software systems.

Software Testing Under
Agile, Scrum, and DevOps

Kamalendu Pal
 https://orcid.org/0000-0001-7158-6481

City, University of London, UK

Bill Karakostas
Independent Researcher, UK

1060

Software Testing Under Agile, Scrum, and DevOps
﻿

The human being, however, is fallible. Even if they adopt the most sophisticated and thoughtful design
techniques, erroneous results can never be avoided a priori. Consequently, software products, like the
products of any engineering activity, must be verified against its requirements throughout its development.

One fundamental approach to verification is experimenting with the behaviour of a product to see
whether the product performs as expected. It is common practice to input a few sample cases (test cases),
which are usually randomly generated or empirically selected, and then verify that the output is correct.
However, it cannot provide enough evidence that the desired behaviour will be exhibited in all remaining
cases. The only testing of any system that can provide absolute certainty about the correctness of system
behaviour is exhaustive testing, i.e., testing the system under all possible circumstances.

In addition, new improved methods and tools for software development are the goals of researchers
and practitioners. The procedure of software development has evolved over the decades to accommo-
date changes in software development practice. Many methods and modelling techniques have been
proposed to improve software development productivity. Also, software engineering has gone through
an evolution in its conception by the business world in the 1960s to recent day application development
methodologies (Pal, 2019).

Software practitioners employ software development methodologies for producing high-quality soft-
ware, satisfying user requirements, effectively managing the software development cost, and ensuring
timely delivery. In this way, software development methodologies play an important role to provide a
systematic and organized approach to software development (Sommerville, 2019). According to Kevin
Roebuck (Roebuck, 2012), a traditional Software Development Life Cycle (SDLC) provides the frame-
work for planning and controlling the development or modification of software products, along with the
methodologies and process models are used for software development.

According to researchers such as (Beck et al., 2001), the Waterfall Modell (Royce, 1970) was proposed
to the information processing industry, as a way in which to assess and build for the users’ needs. It
starts with an end-user requirements analysis that produces all required input for the next stage (software
system design), where software engineers collaborate with others (e.g. database schema designers, user
interface designers) to produce the optimal information system architecture. Next, coders implement
the system with the help of specification documents, and finally, the deployed software system is tested
and shipped to its customers (Beck, 1999).

This process model (work practice) although effective from a theoretical perspective, did not always
work as expected in real life scenarios. Firstly, software customers often change their minds. After
weeks, or even months, of gathering requirements and creating prototypes, users can still be unsure of
what they want – all they know is that what they saw in the produced software was not quite “it”. Sec-
ondly, requirements tend to change mid-development, however, it is difficult to stop the momentum of
the project to accommodate the change. The traditional process models (e.g. Waterfall, Spiral) start to
pose problems when change rates of requirements are relatively high (Boehm, 2002) because coders,
system architects, and managers need to introduce and keep up to date a huge amount of documentation
for the proposed system, even for small changes (Boehm, 1988). The Waterfall software process model
was supposed to fix the problem of changing requirements once and for all by freezing requirements
and not permitting any change once the project starts. However, it is a common experience that software
requirements cannot be pinned down in one fell swoop (Beck, 1999).

In recent decades, the software industry has moved its production mechanism from traditional software
development practice to agile methodologies, to mitigate the ever-increasing software complexity and
globalization of software design and development business. Many industries have started to adopt new

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-testing-under-agile-scrum-and-

devops/294509

Related Content

The Anatomy of the ArchiMate Language
M.M. Lankhorst, H.A. Properand H. Jonkers (2010). International Journal of Information System Modeling

and Design (pp. 1-32).

www.irma-international.org/article/anatomy-archimate-language/40951

Swing Weight Development for Software Platforms
 (2023). Adaptive Security and Cyber Assurance for Risk-Based Decision Making (pp. 86-114).

www.irma-international.org/chapter/swing-weight-development-for-software-platforms/320459

Evolution in Model-Driven Software Product-Line Architectures
Gan Deng, Jeff Gray, Douglas C. Schmidt, Yuehua Lin, Aniruddha Gokhaleand Gunther Lenz (2009).

Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 1280-1312).

www.irma-international.org/chapter/evolution-model-driven-software-product/29446

Incremental Hierarchical Clustering for Data Insertion and Its Evaluation
Kakeru Narita, Teruhisa Hochin, Yoshihiro Hayashiand Hiroki Nomiya (2020). International Journal of

Software Innovation (pp. 1-22).

www.irma-international.org/article/incremental-hierarchical-clustering-for-data-insertion-and-its-evaluation/248527

Discrete Event Simulation Process Validation, Verification, and Testing
Evon M. O. Abu-Taiehand Asim Abdel Rahman El Sheikh (2007). Verification, Validation and Testing in

Software Engineering (pp. 177-212).

www.irma-international.org/chapter/discrete-event-simulation-process-validation/30752

http://www.igi-global.com/chapter/software-testing-under-agile-scrum-and-devops/294509
http://www.igi-global.com/chapter/software-testing-under-agile-scrum-and-devops/294509
http://www.irma-international.org/article/anatomy-archimate-language/40951
http://www.irma-international.org/chapter/swing-weight-development-for-software-platforms/320459
http://www.irma-international.org/chapter/evolution-model-driven-software-product/29446
http://www.irma-international.org/article/incremental-hierarchical-clustering-for-data-insertion-and-its-evaluation/248527
http://www.irma-international.org/chapter/discrete-event-simulation-process-validation/30752

