
627

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 32

DOI: 10.4018/978-1-6684-3702-5.ch032

ABSTRACT

Improving software security in software development teams is an enduring challenge for software com-
panies. In this chapter, the authors present one strategy for addressing this pursuit of improvement. The
approach is ambidextrous in the sense that it focuses on approaching software security activities both
from a top-down and a bottom-up perspective, combining elements usually found separately in software
security initiatives. The approach combines (1) top-down formal regulatory mechanisms deterring
breaches of protocol and enacting penalties where they occur and (2) bottom-up capacity building and
persuasive encouragement of adherence to guidance by professional self-determination, implementa-
tion, and improvement support (e.g., training, stimulating, interventions). The ambidextrous governance
framework illustrates distinct, yet complementary, global and local roles: (1) ensuring the adoption and
implementation of software security practices, (2) enabling and (3) empowering software development
teams to adapt and add to overall mandates, and (4) embedding cultures of improvement.

INTRODUCTION

Today, nearly all sectors of society depend on software systems to operate efficiently. As the dependency
on software has grown, so have the threats towards these systems and the potential consequences of inci-
dents (Tøndel, Jaatun, Cruzes, & Moe, 2017). Though network security measures (such as firewalls and
anti-virus software) can improve the security of the software systems, these only address the symptoms
of the real problem: software that is crippled with vulnerabilities (McGraw, 2006).

Building an Ambidextrous
Software Security Initiative

Daniela Soares Cruzes
SINTEF Digital, Norway

Espen Agnalt Johansen
VISMA, Norway

628

Building an Ambidextrous Software Security Initiative
﻿

Building security into the software through adopting software security activities and measures in the
development process is a direct and effective way of dealing with cyber threats towards software systems
(Tøndel, Jaatun, Cruzes, & Moe, 2017). This, however, adds to the development time and cost, and this
addition needs to be well implemented to be effective. In many ways, security can be considered to be
in conflict with the current trend of “continuous development” (Fitzgerald & Stol, 2017), reducing ef-
ficiency by delaying delivery of new features (at least in the shorter term, though costs may be saved
through having to provide fewer fixes later).

Many researchers affirm that it may be more difficult to establish a working process for software
security activities in agile development compared to waterfall-based development, where you could
more easily have mandatory or recommended security activities for the different software development
phases (Ben Othmane, Angin, Weffers, & Bhargava, 2014) (Ambler, 2008) (Microsoft, 2019). (Oyetoyan,
Jaatun, & Cruzes, 2017) provide a brief overview of secure SDLs (Secure Development Lifecycle) and
conclude that traditional approaches to software security do not necessarily work well with agile devel-
opment processes. Additionally, security, as a non-functional requirement (NFR), is largely a systemic
property, and with agile development it can be more of a challenge to have a complete view of the final
system (Ben Othmane, Angin, Weffers, & Bhargava, 2014).

Non-functional requirements (NFRs) focus on aspects that typically involve or crosscut several func-
tional requirements (Ambler, 2008). Although considered important and crucial to project success, it is
common to see non-functional requirements losing attention in comparison to functional requirements.
(Crispin & Gregory, 2009) argue that with that business partners might assume that the development
team will take care of non-functional requirements such as performance, reliability, and security. But in
reality, due to the agile philosophy that stimulates delivering user value early and often, the prioritization
of quality attributes can be hard in early deliverable increments, resulting in hard-to-modify, unreliable,
slow, or insecure systems (Baca, Boldt, Carlsson, & Jacobsson, 2015) (Bellomo, Gorton, & Kazman,
2015) (Wäyrynen, Bodén, & Boström, 2004). It is not rare to observe in software organizations that
security practices are not prioritized, either because the practitioners are not able to see the relevance
and importance of the activities to the improvement of the security in the project (Camacho, Marczak,
& Cruzes, 2016) or because non-functional or cross-functional issues are perceived as a low risk for
many systems (Jaatun, Cruzes, Bernsmed, Tøndel, & Røstad, 2015). Another issue is that agile devel-
opment teams are generally composed of a small number of developers, and many times are composed
of generalists. However, the proper handling of software security requires specialized tools and might
need specialized knowledge. Given this need for specialized knowledge, a team member with special-
ized security skills might be required to avoid issues in production (Gregory & Crispin, 2014). As it is
nowadays, there are usually not designated roles for security in the software development teams.

At the same time, agile development may come with some opportunities regarding security, e.g., to
adapt to new security threats and to maintain the interaction with customers about security. (Tøndel,
Jaatun, Cruzes, & Moe, 2017) propose a risk-centric approach to security. The authors found that the
observed software security practices in software organizations were not based on an assessment of soft-
ware security risks, but rather driven by compliance. Additionally, their practices could in many cases be
characterized as arbitrary, late, and error driven, with limited follow up on any security issues throughout
their software development projects. Based on the results of the study, the authors identified the need
for improvements in three main areas: responsibilities and stakeholder cooperation, risk perception and
competence, and practical ways of doing risk analysis in agile projects.

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/building-an-ambidextrous-software-security-

initiative/294487

Related Content

Requirements Engineering Process Improvement and Related Models
Badariah Solemon, Shamsul Sahibuddinand Abdul Azim Abd Ghani (2012). Software Process

Improvement and Management: Approaches and Tools for Practical Development (pp. 18-33).

www.irma-international.org/chapter/requirements-engineering-process-improvement-related/61208

A Middleware Architecture for Developing Mobile Applications
Hana Rubinsztejn, José Viterbo, Vagner Sacramento, Ricardo Rocha, Gustavo Baptistaand Markus Endler

(2014). Software Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 270-

284).

www.irma-international.org/chapter/middleware-architecture-developing-mobile-applications/77710

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges
Kostas Kolomvatsosand Stathes Hadjiefthymiades (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 2843-2864).

www.irma-international.org/chapter/can-trust-agents-multi-agent/29539

A Review of Image Analysis Techniques for Adult Content Detection: Child Protection
Justice Kwame Appati, Kennedy Yaw Lodonuand Richmond Chris-Koka (2021). International Journal of

Software Innovation (pp. 102-121).

www.irma-international.org/article/a-review-of-image-analysis-techniques-for-adult-content-detection/277217

Exploration and Exploitation of Developers' Sentimental Variations in Software Engineering
Md Rakibul Islamand Minhaz F. Zibran (2016). International Journal of Software Innovation (pp. 35-55).

www.irma-international.org/article/exploration-and-exploitation-of-developers-sentimental-variations-in-software-

engineering/166542

http://www.igi-global.com/chapter/building-an-ambidextrous-software-security-initiative/294487
http://www.igi-global.com/chapter/building-an-ambidextrous-software-security-initiative/294487
http://www.irma-international.org/chapter/requirements-engineering-process-improvement-related/61208
http://www.irma-international.org/chapter/middleware-architecture-developing-mobile-applications/77710
http://www.irma-international.org/chapter/can-trust-agents-multi-agent/29539
http://www.irma-international.org/article/a-review-of-image-analysis-techniques-for-adult-content-detection/277217
http://www.irma-international.org/article/exploration-and-exploitation-of-developers-sentimental-variations-in-software-engineering/166542
http://www.irma-international.org/article/exploration-and-exploitation-of-developers-sentimental-variations-in-software-engineering/166542

