
 1313

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.11
Reverse Engineering from an

XML Document into an
Extended DTD Graph

Herbert Shiu
City University of Hong Kong, Hong Kong

Joseph Fong
City University of Hong Kong, Hong Kong

AbstrAct

The extensible markup language (XML) has be-
come a standard for persistent storage and data
interchange via the Internet due to its openness,
self-descriptiveness, and flexibility. This article
proposes a systematic approach to reverse engi-
neer arbitrary XML documents to their conceptual
schema, extended DTD graphs, which are DTD
graphs with data semantics. The proposed ap-
proach not only determines the structure of the
XML document, but also derives candidate data
semantics from the XML element instances by
treating each XML element instance as a record
in a table of a relational database. One application
of the determined data semantics is to verify the
linkages among elements. Implicit and explicit
referential linkages are among XML elements

modeled by the parent-children structure and
ID/IDREF(S), respectively. As a result, an arbi-
trary XML document can be reverse engineered
into its conceptual schema in an extended DTD
graph format.

IntroductIon

As the extensible markup language (XML; Bray,
Paoli, Sperberg-McQueen, Maler, & Yergeau,
2004) has become the standard document format,
the chance that users have to deal with XML
documents with different structures is increasing.
If the schema of the XML documents in a docu-
ment type definition (DTD; Bosak, 1998) is given
or derived from the XML documents right away
(Kay, 1999; Moh, Lim, & Ng, 2000), it is easier

1314

Reverse Engineering from an XML Document into an Extended DTD Graph

to study the contents of the XML documents.
However, the formats of these schemas are hard
to read and not very user friendly.

XML has been the common format for storing
and transferring data between software applica-
tions and even business parties as most software
applications can generate or handle XML docu-
ments. For example, a common scenario is that
XML documents are generated and based on the
data stored in a relational database; there have
been various approaches for doing so (Fernandez,
Morishima, & Suciu, 2001; Thiran, Estiévenart,
Hainaut, & Houben, 2004). The sizes of XML
documents that are generated based on the data
stored in databases can be very large. Most prob-
ably, these documents are stored in a persistent
storage for backup purposes as XML is the ideal
format that can be processed by any software
applications in the future.

In order to handle the above scenario, it is
possible to treat XML element instances in an
XML document as individual entities, and the
relationships from the different XML element
types can be determined by reverse engineering
them for their conceptual models, such as extended
DTD graphs with data semantics. As such, users
can have a better understanding of the contents
of the XML document and further operations
with the XML document become possible, such
as storing and querying (Deutsch, Fernandez, &
Suciu, 1999; Florescu & Kossmann, 1999; Kanne
& Moerkotte, 2000).

This article proposes several algorithms that
analyze XML documents for their conceptual
schema. Two main categories of XML documents
exist: data centric and narrative. As the contents
of narrative XML documents, such as DocBook
(Stayton, 2008) documents, are mainly unstruc-
tured and their vocabulary is basically static, the
necessity of handling them as structured contents
and reverse engineering them into conceptual
models is far less than that of handling data-centric
ones. Therefore, this article will concentrate on
data-centric XML documents.

referential Integrity in XMl
documents

XML natively supports one referential integrity
mechanism, which is the ID/IDREF(S) type of at-
tribute linkages. In every XML document, the
value of an ID type attribute appears at most
once and the value of the IDREF(S) attribute must
refer to one ID type attribute value. An IDREF(S)
type attribute can refer to any XML element in
the same document, and each XML element can
define at most one ID type attribute. Due to the
nature of ID/IDREF(S) type attributes in XML
documents, relationships among different XML
element types can be realized and it is possible to
use them to implement data semantics.

This article will discuss the various data
semantics and the possible ways to implement
them. The algorithms presented are based on
observations of the common XML document
structures:

1. Due to the nested structure of an XML
document (the relationship between a parent
element and its child elements), the child
elements implicitly refer to their parent
element.

2. For an IDREF or IDREFS type attribute, the
defining element is referred to the element(s)
with an ID type attribute by the referred
value. Such linkages are similar to the for-
eign keys in a relational database. The two
associated element types are considered to
be linked by an explicit linkage.

3. As an IDREFS type attribute can refer to more
than one element, there is a one-to-many
cardinality from the referring element type
and the referred element type(s).

The schema of an XML document can restrict
the order of the XML elements, which may be sig-
nificant; the order depends on the intentions of the
original XML document designer. For example,

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reverse-engineering-xml-document-into/29447

Related Content

Aspect-Oriented Recommender Systems
Punam Bediand Sumit Kr Agarwal (2013). Designing, Engineering, and Analyzing Reliable and Efficient

Software (pp. 55-72).

www.irma-international.org/chapter/aspect-oriented-recommender-systems/74874

Vehicle Type Classification Using Hybrid Features and a Deep Neural Network
 Sathyanarayana N.and Anand M. Narasimhamurthy (2022). International Journal of Software Innovation

(pp. 1-18).

www.irma-international.org/article/vehicle-type-classification-using-hybrid-features-and-a-deep-neural-network/297511

MADES FP7 EU Project: Effective High Level SysML/MARTE Methodology for Real-Time and

Embedded Avionics Systems
Alessandra Bagnato, Imran Quadri, Etienne Brosse, Andrey Sadovykh, Leandro Soares Indrusiak, Richard

Paige, Neil Audsley, Ian Gray, Dimitrios S. Kolovos, Nicholas Matragkas, Matteo Rossi, Luciano Baresi,

Matteo Carlo Crippa, Stefano Genolini, Scott Hansenand Gundula Meisel-Blohm (2014). Handbook of

Research on Embedded Systems Design (pp. 181-208).

www.irma-international.org/chapter/mades-fp7-eu-project/116110

Monitoring Buffer Overflow Attacks: A Perennial Task
Hossain Shahriarand Mohammad Zulkernine (2010). International Journal of Secure Software Engineering

(pp. 18-40).

www.irma-international.org/article/monitoring-buffer-overflow-attacks/46150

Refactoring Flash Embedding Methods
Ming Yingand James Miller (2012). International Journal of Systems and Service-Oriented Engineering (pp.

26-40).

www.irma-international.org/article/refactoring-flash-embedding-methods/79237

http://www.igi-global.com/chapter/reverse-engineering-xml-document-into/29447
http://www.irma-international.org/chapter/aspect-oriented-recommender-systems/74874
http://www.irma-international.org/article/vehicle-type-classification-using-hybrid-features-and-a-deep-neural-network/297511
http://www.irma-international.org/chapter/mades-fp7-eu-project/116110
http://www.irma-international.org/article/monitoring-buffer-overflow-attacks/46150
http://www.irma-international.org/article/refactoring-flash-embedding-methods/79237

