1013

Chapter 2.26
Decision Rule for Investment in
Frameworks of Reuse

Roy Gelbard
Bar-Ilan University, Israel

ABSTRACT

Reuse helps to decrease development time, code
errors, and code units. Therefore, it serves to
improve quality and productivity frameworks in
software development. The question is not HOW
tomake the code reusable, but WHICH amount of
software components would be most beneficial,
thatis, cost-effective interms of reuse,and WHAT
method should be used to decide whether to make
a component reusable or not. If we had unlimited
time and resources, we could write any code unit
in a reusable way. In other words, its reusability
would be 100%. However, in real life, resources
are limited and there are clear deadlines to be
met. Given these constraints, decisions regarding
reusability are not always straightforward. The
currentresearch focuses on decision-makingrules
for investing in reuse frameworks. It attempts to
determine the parameters, which should be taken
into account in decisions relating to degrees of
reusability. Two new models are presented for
decision-making relating to reusability: (i) a

restricted model and (ii) a non-restricted model.
Decisions made by using these models are then
analyzed and discussed.

INTRODUCTION

Reuse helps decrease development time, code
errors, and code units, thereby improving qual-
ity and productivity frameworks in software
development. Reuse is based on the premise that
educing asolution from the statement of a problem
involves more effort (labor, computation, etc.) than
inducing a solution from a similar problem for
which such efforts have already been expended.
Therefore, reuse challenges are structural, orga-
nizational, and managerial, as well as technical.

Economic considerations and cost-benefit
analyses in general, must be at the center of any
discussion of software reuse; hence, the cost-ben-
efit issue is not HOW to make the code reusable,
but WHICH amount of software components
would be most beneficial, that is, cost-effective

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

for reuse, and WHAT method should be used
when deciding whether to make a component
reusable or not.

If we had unlimited time and resources, we
could write any code unit in a reusable way. In
other words, its reusability would be 100% (reus-
ability refers to the degree to which a code unit
canbereused). However, inreal life, resources are
limited and there are clear deadlines to be met.
Given these constraints, reusability decisions are
not always straightforward.

A review of the relevant literature shows that
there are a variety of models used for calculat-
ing-evaluating reuse effectiveness, but none
apparently focus on the issue of the degree to
which a code is reusable. Thus, the real question
is how to make reusability pragmatic and efficient,
that is, a decision rule for investment in reuse
frameworks. The current study focuses on the
parameters, which should be taken into account
when making reusability degree decisions. Two
new models are presented here for reusability
decision-making:

. A non-restricted model, which does not take
into account time, resources, or investment
restrictions.

. A restricted model, which takes the above-
mentioned restrictions into account.

Themodels are compared, using the same data,
to test whether they lead to the same conclusions or
whether a contingency approach is preferable.

BACKGROUND

Notwithstanding differences between reuse ap-
proaches, it is useful to think of software reuse
research in terms of attempts to minimize the
average cost of a reuse occurrence (Mili, Mili,
& Mili, 1995).

1014

Decision Rule for Investment in Frameworks of Reuse

[Search + (1-p) * (ApproxSearch +q * Adapta-
tion old + (1-q)* Development new)]

Where:

* Search (ApproxSearch) is the average cost
of formulating a search statement of a library
of reusable components and either finding
one that matches the requirements exactly
(appreciatively), or being convinced that
none exists.

* Adaptation old is the average cost of adapt-
ing a component returned by approximate
retrieval.

* Development new is the average cost of
developing a component that has no match,
exact or approximate, in the library.

For reuse to be cost-effective, the above must
be smaller than:

p *Development exact +(1-p)* q * Development
approx +(1-p)* (1-q)” Development new)

Where:

. Development exact and development new
represent the average cost of developing cus-
tom-tailored versions of components in the
library that could be used as is, or adapted,
respectively. Note thatall these averages are
time averages, and notaverages of individual
components, that is, a reusable component
is counted as many times as it is used.

Developing reusable software aims at maxi-
mizing P (probability of finding an exact match)
and Q (probability of finding an approximate
match), that is, maximizing the coverage of the
application domain and minimizing adaptation for
a set of common mismatches, that is, packaging
components in such a way that the most common
old mismatches are handled easily. Increasing P

7 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/decision-rule-investment-frameworks-
reuse/29432

Related Content

Evolution of Blockchain Technology: Principles, Research Trends and Challenges, Applications,
and Future Directions

Oluwaleke Umar Yusufand Maki K. Habib (2023). Perspectives and Considerations on the Evolution of
Smart Systems (pp. 67-104).

www.irma-international.org/chapter/evolution-of-blockchain-technology/327527

Comparative Analysis of Intelligent Driving and Safety Assistance Systems Using YOLO and
SSD Model of Deep Learning

Nidhi Sindhwani, Shekhar Verma, Tushar Bajajand Rohit Anand (2021). International Journal of Information
System Modeling and Design (pp. 131-146).

www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-

and-ssd-model-of-deep-learning/273230

Agile Coaches and Champions: Two Hidden Facilitators of Agile Transition

Taghi Javdani Gandomaniand Mina Ziaei Nafchi (2016). Emerging Innovations in Agile Software
Development (pp. 24-36).

www.irma-international.org/chapter/agile-coaches-and-champions/145032

Concepts and Strategies for Quality of Modeling

Patrick van Bommel, Stijn Hoppenbrouwers, Erik Properand Jeroen Roelofs (2009). Innovations in
Information Systems Modeling: Methods and Best Practices (pp. 167-189).
www.irma-international.org/chapter/concepts-strategies-quality-modeling/23789

Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent
Systems and Services

Kensuke Naoe, Hideyasu Sasakiand Yoshiyasu Takefuji (2010). International Journal of Systems and
Service-Oriented Engineering (pp. 46-61).
www.irma-international.org/article/secure-key-generation-static-visual/39098

http://www.igi-global.com/chapter/decision-rule-investment-frameworks-reuse/29432
http://www.igi-global.com/chapter/decision-rule-investment-frameworks-reuse/29432
http://www.irma-international.org/chapter/evolution-of-blockchain-technology/327527
http://www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-and-ssd-model-of-deep-learning/273230
http://www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-and-ssd-model-of-deep-learning/273230
http://www.irma-international.org/chapter/agile-coaches-and-champions/145032
http://www.irma-international.org/chapter/concepts-strategies-quality-modeling/23789
http://www.irma-international.org/article/secure-key-generation-static-visual/39098

