
 975

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.24
An Incremental

Functionality-Oriented Free
Software Development

Methodology
Oswaldo Terán

ENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos and Centro de Simulación y Mod-
elos, Universidad de los Andes, Venezuela

Johanna Alvarez
CENDITEL, Venezuela

Blanca Abraham
CEMISID Universidad de los Andes, Venezuela

Jose Aguilar
CENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos, Universidad de los Andes, Venezuela

Abstract

This chapter presents a methodology used as refer-
ence model for a free software factory that is part
of the National Centre for Free Technologies in
Venezuela. This centre is oriented at promoting
free software development for serving mostly
the public sector in order to promote endogenous
development and technologic autonomy. Under
this strategy, strengthening the software small
and medium size enterprises and cooperatives, by

allowing them to participate in different projects
(improving their know-how) and providing them
with a methodology for increasing their capabili-
ties and software quality, is necessary and urgent.
This methodology plans the development process
incrementally, based on a prioritisation of the
software functionalities development in accor-
dance to the functionalities risks, development
urgency, and dependencies. It combines aspects
of the two styles of free software development,

976

An Incremental Functionality-Oriented Free Software Development Methodology

namely cathedral and bazaar. The development
process is centralised, in essence collaborative,
and continuously allows source code release.

Introduction

The Free Software Factory (FSF) of CENDITEL
(Venezuelan national centre for promoting free
technologies) has been conceived and created as
part of the efforts of the Venezuelan State aim-
ing at increasing endogenous development and
technological sovereignty. In particular, it intends
to strengthen the national software sector, espe-
cially the small and medium software enterprises
(including the cooperatives), by allowing them
to access the technology and participate in the
software market, on one hand, and to increase
their capabilities and software quality, on the
other hand.

Two styles exist for developing free software:
the cathedral style and the bazaar style. In the
cathedral mode, software is developed from a
unified a priori project that prescribes all the
functions and the features to be incorporated in
the final product. Programmers’ work is centrally
coordinated and supervised in order to assure the
integration of various components. On the other
hand, in the bazaar style, software emerges from
an unstructured evolutionary process. Starting
from a minimal code, groups of programmers
add features and introduce modifications and
patches to the code. There is no central allocation
of different tasks; developers are free to develop
a given program in directions they favor.

This chapter presents an attempt at building a
free software development methodology having
many characteristics of the cathedral style but
keeping certain principle of the bazaar mode.
The methodology has been developed at a public
organisation which responds to public sector free
software necessities and requirements that must
be satisfied in a limited time period. Because of
this, it is necessary to adopt the cathedral mode of

work while taking key advantages of the bazaar
style. For instance, it is allowed that developers
from outside the organisation contributes with
software coding, testing, and so forth; these exter-
nal developers do not follow a centrally controlled
process; and the software code is made public as
soon as it is tested.

This methodology assumes an organisational
structure oriented towards specific processes.
The processes dedicated to software develop-
ment are:

Process # 1: Free Software Project Manage-
ment
Process # 2: Specific Project Administra-
tion
Process # 3: Free Software Application De-
velopment

Actions to be carried out in these processes are
classified in steps and activities. In particular, steps
and activities in the third process are implemented
by the following six phases. This methodology
has taken ideas from diverse software develop-
ment methodologies, methods, and models such
as the extreme programming method (Beck,
2004), the rational unified process (Kruchten,
2000; Pollice, 2001; Probasco, 2000), the watch
method (Montilva, 2004; Montilva, Hamzan, &
Ghatrawi, 2000), and the model of processes for
software development (MoProSoft) (Oktaba et
al., 2005). Due to the fact that these models and
methods, except extreme programming, have
been proposed proprietary software development,
it has been necessary to adapt the hints, ideas, or
procedures taken from them to the free software
development needs.

The methodology to be proposed has been
validated at the FSF of the Foundation for Science
and Technology of the Mérida State in Venezuela
(FUNDACITE-Mérida). This factory has permit-
ted us to understand better, empirically, the real
needs of a free software development process and
has also been a source of interesting ideas. The

•

•

•

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/incremental-functionality-oriented-free-

software/29430

Related Content

A Decision Making Paradigm for Software Development in Libraries
Harish Maringanti (2022). Research Anthology on Agile Software, Software Development, and Testing (pp.

1444-1457).

www.irma-international.org/chapter/a-decision-making-paradigm-for-software-development-in-libraries/294526

How to Systematically Embed Cycles in Balanced Hypercubes
Hsuan-Han Chang, Kuan-Ting Chenand Pao-Lien Lai (2017). International Journal of Software Innovation

(pp. 44-56).

www.irma-international.org/article/how-to-systematically-embed-cycles-in-balanced-hypercubes/169917

Understanding the Role of Use Cases in UML: A Review and Research Agenda
Brian Dobingand Jeffrey Parsons (2002). Successful Software Reengineering (pp. 111-128).

www.irma-international.org/chapter/understanding-role-use-cases-uml/29972

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models
Pankaj Kamthan (2009). Model-Driven Software Development: Integrating Quality Assurance (pp. 327-

351).

www.irma-international.org/chapter/framework-understanding-addressing-semiotic-quality/26835

Mobility Markov Chain and Matrix-Based Location-Aware Cache Replacement Policy in Mobile

Environment: MMCM-CRP
Ajay Kumar Guptaand Udai Shanker (2021). International Journal of Software Innovation (pp. 88-106).

www.irma-international.org/article/mobility-markov-chain-and-matrix-based-location-aware-cache-replacement-policy-in-

mobile-environment/289171

http://www.igi-global.com/chapter/incremental-functionality-oriented-free-software/29430
http://www.igi-global.com/chapter/incremental-functionality-oriented-free-software/29430
http://www.irma-international.org/chapter/a-decision-making-paradigm-for-software-development-in-libraries/294526
http://www.irma-international.org/article/how-to-systematically-embed-cycles-in-balanced-hypercubes/169917
http://www.irma-international.org/chapter/understanding-role-use-cases-uml/29972
http://www.irma-international.org/chapter/framework-understanding-addressing-semiotic-quality/26835
http://www.irma-international.org/article/mobility-markov-chain-and-matrix-based-location-aware-cache-replacement-policy-in-mobile-environment/289171
http://www.irma-international.org/article/mobility-markov-chain-and-matrix-based-location-aware-cache-replacement-policy-in-mobile-environment/289171

