
910

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.21
Constructivist Learning During

Software Development
Václav Rajlich

Wayne State University, USA

Shaochun Xu
Laurentian University, Canada

Abstract

This article explores the non-monotonic nature
of the programmer learning that takes place dur-
ing incremental program development. It uses
a constructivist learning model that consists of
four fundamental cognitive activities: absorption
that adds new facts to the knowledge, denial that
rejects facts that do not fit in, reorganization that
reorganizes the knowledge, and expulsion that
rejects obsolete knowledge. A case study of an
incremental program development illustrates the
application of the model and demonstrates that
it can explain the learning process with episodes
of both increase and decrease in the knowledge.
Implications for the documentation systems are
discussed in the conclusions.

Introduction

One of the puzzling issues of software engineer-
ing is the nature of the knowledge that is needed
in order to develop and evolve a program. The
program itself is a repository of knowledge about
the program domain and may contain knowledge
that is not available elsewhere, as documented by
Kozaczynski and Wilde (1992). It also contains
knowledge of all design decisions that were made
during the program development and consequent
program evolution (Rugaber, Ornburn, & LeB-
lanc, 1990). When evolving or maintaining the
program, it is necessary to recover this knowl-
edge; otherwise, maintenance or evolution will be
impossible. It is also necessary to communicate
this knowledge to all new programmers who are
joining an existing software project. The loss of
the programming knowledge can be a serious

 911

Constructivist Learning During Software Development

problem and was identified as a leading cause of
the code decay (Rajlich & Bennett, 2000).

Although the knowledge is embedded in the
program, it cannot be easily recovered since it is
encoded in programming structures and delocal-
ized into different components of the program.
Moreover, the consequences of the decisions,
rather than the decisions themselves, appear in the
code. In many ways, the recovery of knowledge
from the code is similar to solving a puzzle and
is laborious and error prone.

One of the most basic questions that concerns
the nature of the programmer knowledge is the
issue of its monotonicity. According to a naïve
view, the knowledge steadily increases, as the new
facts emerge and are absorbed by the program-
ming team; many current documentation systems
are geared towards that (Ye, 2006). However, in
this article we show that there are also episodes
of the knowledge retraction, and the documenta-
tion systems should provide an adequate support
for that also.

Our approach in the article is based on cog-
nitive informatics (CI). CI is a multidisciplinary
study of cognition and information sciences,
which investigates human information processing
mechanisms and processes and their applications
in computing (Wang & Kinsner, 2006); studying
the knowledge and cognitive process involved
in software development is one of the goals of
cognitive informatics.

In order to understand the nature of program-
ming knowledge and its acquisition, we adopted
and further developed a constructivist model of
programmer learning that is based on four basic
cognitive activities: absorption, denial, reorga-
nization, and expulsion of the knowledge. We
validated this model in a case study of the pair
programming that is a part of eXtreme Program-
ming (Martin, 2002). In pair programming, two
programmers work side-by-side at one machine as
they collaborate in program design, implementa-
tion, and testing. The programming pair has to
communicate and share the knowledge, and this

gives an opportunity to analyze unobtrusively
their dialog for the indications of the programmer
knowledge and learning.

The first section of this article describes our
theory of constructivist learning. The second sec-
tion describes the case study. The third section
contains the discussion of the results of the case
study and the fourth section has an overview of
the related literature. The fifth section contains
general conclusions and future work.

Theory of Constructivist
Learning

The constructivist learning model is based on the
work of Piaget (Piaget, 1954). The original aim
of Piaget was to explain learning in children, but
the constructivist theory extends to adult learn-
ing and to epistemology (von Glasersfeld, 1995).
The theory assumes that the learners actively and
incrementally construct their knowledge. They
start from some preliminary knowledge, and they
extend it by adding new facts to it; they may go
through stages in which they may accept ideas
that they will later discard as wrong. The two
main activities are assimilation and accommoda-
tion, where assimilation describes how learners
deal with new knowledge, and accommodation
describes how learners reorganize their existing
knowledge.

We modified this theory by dividing assimila-
tion into two separate activities. Absorption means
that the learners add new facts to their knowledge.
However, if the new facts do not fit in, the learners
may reject them; we call this second activity a
denial. We also divided accommodation into two
separate activities. Reorganization means that the
learners reorganize their knowledge to aid future
absorption of new facts. Expulsion is the process
where part of the knowledge becomes obsolete or
provably incorrect and the learners reject it. Of
course, there are also mixed activities: learners
may absorb a modified fact, rather than make an

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/constructivist-learning-during-software-

development/29427

Related Content

Experiences with Modelling Early Requirements
Pericles Loucopoulos (2008). Information Systems Engineering: From Data Analysis to Process Networks

(pp. 186-206).

www.irma-international.org/chapter/experiences-modelling-early-requirements/23416

Speech Synthesis of Emotions Using Vowel Features
Kanu Boku, Taro Asada, Yasunari Yoshitomiand Masayoshi Tabuse (2013). International Journal of

Software Innovation (pp. 54-67).

www.irma-international.org/article/speech-synthesis-emotions-using-vowel/77618

A Comparative Analysis of Reliability Assessment Methods for Web-Based Software
Jinhee Park, Yeong-Seok Seoand Jongmoon Baik (2013). International Journal of Software Innovation (pp.

31-44).

www.irma-international.org/article/a-comparative-analysis-of-reliability-assessment-methods-for-web-based-

software/105630

Managing Software Projects with Team Software Process (TSP)
Salmiza Saul Hamid, Mohd Hairul Nizam Md Nasir, Shamsul Sahibuddinand Mustaffa Kamal Mohd Nor

(2014). Software Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 1550-

1583).

www.irma-international.org/chapter/managing-software-projects-team-software/77771

Information and Knowledge Perspectives in Systems Engineering and Management for

Innovation and Productivity through Enterprise Resource Planning
Stephen V. Stephensonand Andrew P. Sage (2010). Emerging Systems Approaches in Information

Technologies: Concepts, Theories, and Applications (pp. 227-256).

www.irma-international.org/chapter/information-knowledge-perspectives-systems-engineering/38183

http://www.igi-global.com/chapter/constructivist-learning-during-software-development/29427
http://www.igi-global.com/chapter/constructivist-learning-during-software-development/29427
http://www.irma-international.org/chapter/experiences-modelling-early-requirements/23416
http://www.irma-international.org/article/speech-synthesis-emotions-using-vowel/77618
http://www.irma-international.org/article/a-comparative-analysis-of-reliability-assessment-methods-for-web-based-software/105630
http://www.irma-international.org/article/a-comparative-analysis-of-reliability-assessment-methods-for-web-based-software/105630
http://www.irma-international.org/chapter/managing-software-projects-team-software/77771
http://www.irma-international.org/chapter/information-knowledge-perspectives-systems-engineering/38183

