
 505

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.1
Ontology Based Object-Oriented

Domain Modeling:
Representing Behavior

Joerg Evermann
Memorial University of Newfoundland, Canada

Yair Wand
The University of British Columbia, Canada

Abstract

An important step in developing the requirements
for an information system is analyzing the ap-
plication domain. In this step, conceptual models
are used for representing an application domain.
However, while languages for software design are
available and widely used, no generally accepted
language exists for conceptual modeling. This
work suggests the use of object-oriented software
modeling languages also for conceptual modeling.
Such use can support a more accurate transition
from domain models to software models. As
software-modeling languages were not intended
for modeling application domains, their constructs
lack the required semantics. While previous papers
addressed the representation of structural ele-
ments of domains using object concepts, this paper
addresses behavioral aspects, related to change

and interaction. The proposed semantics are based
on a mapping between ontological concepts that
describe behavior and object-oriented constructs
related to dynamics. Based on these mappings,
modeling rules are proposed to guide the modeler
in creating ontologically well-formed models. The
mappings and rules are exemplified using UML
and are demonstrated using a case study.

INTRODUCTION

A good understanding of the application domain
is necessary to develop the requirements for in-
formation systems (IS). Such understanding can
be facilitated with the use of conceptual models.
Conceptual modeling is the “activity of formally
describing some aspects of the physical and
social world for the purpose of understanding”
(Mylopoulos, 1992).

506

Ontology Based Object-Oriented Domain Modeling

Despite possible benefits to IS development of
using conceptual models, no widely used formal
or semi-formal language for conceptual model-
ing exists. In contrast, formal and semi-formal
languages, notably object-oriented languages, are
commonly used in software design. As reported
in (Dobing & Parsons, 2006, 2008) and also found
in our case study (Sec. 8), practitioners, for lack
of a language specific to conceptual modeling,
have been using software design languages for
this purpose. However, this often occurs in an
unguided way, possibly leading to confusion and
difficulties in understanding. Without guidance,
the support of UML for describing domains other
than software is poor and this can lead to miscom-
munication (Smolander & Rossi, 2008).

Adopting widely used and well-accepted
object-oriented languages, usually employed for
software design, in a guided way and with clearly
specified semantics for conceptual modeling, has
several potential benefits: (1) It can provide a
shared language to support better communication
between analysts and software designers. (2) It
can help mitigate translation problems between the
conceptual and the software models, (also called
“impedance mismatch” (Cilia, Haupt, Mezini, &
Buchmann, 2003; Kolp, Giorgini, & Mylopou-
los, 2002; Roe, 2003; Rozen & Shasha, 1989).
More specifically, because the domain model is
specified in the same language as software, the
domain model can also serve as an initial model
of the software system (Coad & Yourdon, 1991),
which can subsequently be adapted to particular
technologies. Such technology-driven refactoring
is beyond the scope of this paper. The discussion
in Section 9 will revisit this point in more detail.
(3) A clear representation of application aspects
can reduce possible confusion of business and
implementation aspects in conceptual models
(Parsons & Wand, 1997). (4) Assigning semantics
to language constructs for domain representation
purposes can provide modeling rules (Evermann
& Wand, 2005a).

Because object-oriented languages were not
developed for conceptual modeling, they lack ap-
plication domain semantics. For example, while
language constructs such as “Method” or “Opera-
tion” have clear meaning for software design, it
less clear what they represent in the application
domain. However, assigning application domain
semantics to language constructs, while necessary
for their use in application domain modeling, is
insufficient. It is also desirable to identify modeling
rules to ensure that the created models represent
only really possible situations in the application
domain. Modeling rules can improve the ability
to communicate and reason about the domain by
restricting the possible interpretations of a model
(Hadar & Soffer, 2006), and hence can support
convergence of the domain understanding among
different stakeholders, a pre-requisite for devel-
opment and implementation success. Therefore,
such rules can improve the effectiveness of the
created models as ways to communicate and
reason about the domain (Reinhartz-Berger &
Sturm, 2008).

Previous research (Evermann & Wand, 2005b)
proposed the use of object-oriented design lan-
guages for modeling the structural aspects of ap-
plication domains. That research proposed specific
application domain semantics for the static struc-
ture constructs found in UML class diagrams, and
suggested modeling rules to develop well-formed
and meaningful (with respect to perceptions of
the real world application domain) models. The
present work addresses the behavioral aspects of
conceptual modeling, focusing on constructs to
describe change and interaction. We exclude use
case related constructs as they describe external
interactions with a system, whereas the remaining
UML constructs describe the system itself.

Our approach is based on the use of ontology,
a specification of concepts that exist in a domain.
Previously, ontologies have been used mostly to
evaluate modeling languages (Green & Rose-
mann, 2000; Opdahl & Henderson-Sellers, 2002;
Opdahl, Henderson-Sellers, & Barbier, 1999).

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/ontology-based-object-oriented-domain/29407

Related Content

Design and Application of Clerical Style Recognition System Based on Data Mining Algorithm
Feifei Jiang, Chenghu Ke, Chenchen Zhongand Xiaoling Zhang (2025). International Journal of Information

System Modeling and Design (pp. 1-17).

www.irma-international.org/article/design-and-application-of-clerical-style-recognition-system-based-on-data-mining-

algorithm/365344

Legacy Software Integration in Service-Driven Environments: An Intelligent Agent-Based

Framework
Chung-Yeung Pang (2014). Handbook of Research on Architectural Trends in Service-Driven Computing

(pp. 414-438).

www.irma-international.org/chapter/legacy-software-integration-in-service-driven-environments/115438

Requirements and Design Architectures of Sensor Service Portals (SSPs) in Ubiquitous

Pervasive Environments
Muhammad Taqi Raza, Fatima Muhammad Anwar, Seung-Wha Yooand Ki-Hyung Kim (2012). Handbook

of Research on Mobile Software Engineering: Design, Implementation, and Emergent Applications (pp. 59-

81).

www.irma-international.org/chapter/requirements-design-architectures-sensor-service/66460

Comparative Analysis of Intelligent Driving and Safety Assistance Systems Using YOLO and

SSD Model of Deep Learning
Nidhi Sindhwani, Shekhar Verma, Tushar Bajajand Rohit Anand (2021). International Journal of Information

System Modeling and Design (pp. 131-146).

www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-

and-ssd-model-of-deep-learning/273230

Implementation of Human-Machine Interface Module and Control System Based on Controller

Area Network
H. Mohammed Ali, S. Radhika, G. Vanya Sreeand Ramya Maranan (2023). Cyber-Physical Systems and

Supporting Technologies for Industrial Automation (pp. 229-244).

www.irma-international.org/chapter/implementation-of-human-machine-interface-module-and-control-system-based-on-

controller-area-network/328503

http://www.igi-global.com/chapter/ontology-based-object-oriented-domain/29407
http://www.irma-international.org/article/design-and-application-of-clerical-style-recognition-system-based-on-data-mining-algorithm/365344
http://www.irma-international.org/article/design-and-application-of-clerical-style-recognition-system-based-on-data-mining-algorithm/365344
http://www.irma-international.org/chapter/legacy-software-integration-in-service-driven-environments/115438
http://www.irma-international.org/chapter/requirements-design-architectures-sensor-service/66460
http://www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-and-ssd-model-of-deep-learning/273230
http://www.irma-international.org/article/comparative-analysis-of-intelligent-driving-and-safety-assistance-systems-using-yolo-and-ssd-model-of-deep-learning/273230
http://www.irma-international.org/chapter/implementation-of-human-machine-interface-module-and-control-system-based-on-controller-area-network/328503
http://www.irma-international.org/chapter/implementation-of-human-machine-interface-module-and-control-system-based-on-controller-area-network/328503

