
���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.24
 Domain-Specific Language for
Describing Grid Applications

Enis Afgan
University of Alabama at Birmingham, USA

Purushotham Bangalore
University of Alabama at Birmingham, USA

Jeff Gray
University of Alabama at Birmingham, USA

aBStract

Grid computing environments are dynamic and
heterogeneous in nature. In order to realize ap-
plication-specific Quality of Service agreements
within a grid, specifications at the level of an
application are required. This chapter intro-
duces an XML-based schema language (called
the Application Specification Language, ASL)
and a corresponding modeling tool that can be
used to describe applications in grid computing
environments. Such application descriptions al-
low derivation of guided and autonomic service
developments for installation and invocation
routines throughout the grid. In order to promote
the language and ease the application description
process, a domain-specific tool is also introduced.
Based on our experience, the ASL in combination

with higher level models improves, simplifies
and promotes the grid application deployment
process while simultaneously minimizing tedious
and error-prone tasks such as manual application
description composition.

IntroductIon

Grid computing (Foster, Kesselman, & Tuecke,
2001) has gained popularity as the emerging ar-
chitecture for next-generation high performance
distributed computing. Grid computing provides
ubiquitous access to distributed high performance
computing (HPC) resources that are shared be-
tween multiple organizations through virtualiza-
tion and aggregation. This is realized through a
layer of software (e.g., grid middleware), thus

 ���

 Domain-Specific Language for Describing Grid Applications

making grid applications extremely software-
intensive systems where the value of software is
equivalent to the value of the underlying infra-
structure. Grid middleware provides a standard
set of services for authentication, authorization,
resource allocation and management, job sched-
uling, submission, monitoring, and data transfer
and management (Berman, Hey, & Fox, 2003b).
Software packages and tools based on open-
source/open-standard approaches such as Globus
Toolkit (Foster & Kesselman, 1997) have enabled
the deployment of “production quality” compu-
tational grids. Several domain-specific grids are
currently operational, for example, Grid Physics
Network (GriPhyN) (GriPhyN, 2006), Network
for Earthquake Engineering Simulation (NEES-
Grid) (NEES, 2006), International Virtual Data
Grid Laboratory (IVDGL) (IVDGL, 2006), Open
Science Grid (Grid, 2007), and Particle Physics
Data Grid Collaboratory Pilot (Grid2003) (PPDG,
2006). Grid computing has offered researchers
enormous computing and data storage capabilities
by providing seamless access to geographically
distributed resources through the creation of
virtual organizations (VOs).

Despite the many benefits of grid computing,
the grid itself does not provide a novel program-
ming paradigm for developing new applications.
Furthermore, no formal methodology exists for
porting existing legacy applications to the grid.
Most of the applications developed for the grid
are based on traditional HPC or distributed com-
puting principles. Typical HPC applications are
developed using implicit parallel programming
techniques (e.g., compiler-based automatic paral-
lelization and directive-based parallelization) or
explicit parallel programming techniques (e.g.,
threads and message-passing). After an HPC
application is developed and tested on local
resources, it is then deployed; that is, the entire
application (source code, dataset, scripts) is trans-
ferred to a remote site, compiled on a remote host,
and made available for execution.

Deploying an application on the grid requires
additional steps that involve user intervention,
great insight into the internal structure of the
application, as well as familiarity with the vari-
ous grid computing technologies and toolkits.
In addition, the progressive steps of application
execution and job submission may involve many
additional steps required from the end-user, not
necessarily found in a typical application. Due
to this inherent complexity and difficulty using
the grid, several approaches have attempted to
simplify grid deployment and configuration by
developing technologies such as Web portals
(Gannon et al., 2003), workflow systems (Aalst &
Hee, 2002), and component assembly (Armstrong
et al., 1999). The ultimate goal of such efforts is
to enable the adoption of grid technologies and
applications to a wider group of end-users who
are not familiar with programming languages and
the lower level grid infrastructure. The potential
impact for improving grid accessibility to such
users is significant (e.g., applied science research-
ers, distributed organizations, and organizations
with variable computational requirements).

To tailor the complexities of a user’s view of
the vast amount of grid software by addressing the
goals of end-user accessibility, there is a need to
standardize and simplify the process of application
deployment on the grid. As part of the contribution
of this chapter, we present a new language called
the Application Specification Language (ASL)
(Afgan & Bangalore, 2007) that can be used by
application developers and end-users to describe
details of a given application. The ASL allows an
application to be represented in the heterogeneous
world of the grid by capturing its functionality,
options and differences as compared with other
applications found in the grid. Through the use
of ASL, application descriptions can be made
available for immediate use or further advance-
ments among applications such as job schedulers,
automated interface generators and application-
specific on-demand help provisioning. The ASL

36 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/domain-specific-language-describing-grid/29396

Related Content

Text-Dependent and Text-Independent Writer Identification Approaches: Challenges and Future

Directions
Rajandeep Kaur, Rajneesh Raniand Roop Pahuja (2022). International Journal of Software Innovation (pp.

1-23).

www.irma-international.org/article/text-dependent-and-text-independent-writer-identification-approaches/297514

Autonomic Business-Driven Dynamic Adaptation of Service-Oriented Systems and the WS-

Policy4MASC Support for Such Adaptation
Vladimir Tosic (2012). Theoretical and Analytical Service-Focused Systems Design and Development (pp.

140-156).

www.irma-international.org/chapter/autonomic-business-driven-dynamic-adaptation/66797

Language Engineering for Mobile Software
Engineer Bainomugisha, Alfredo Cádiz, Pascal Costanza, Wolfgang De Meuter, Sebastián González, Kim

Mens, Jorge Vallejosand Tom Van Cutsem (2012). Handbook of Research on Mobile Software

Engineering: Design, Implementation, and Emergent Applications (pp. 150-166).

www.irma-international.org/chapter/language-engineering-mobile-software/66466

Katana: Towards Patching as a Runtime Part of the Compiler-Linker-Loader Toolchain
Sergey Bratus, James Oakley, Ashwin Ramaswamy, Sean W. Smithand Michael E. Locasto (2010).

International Journal of Secure Software Engineering (pp. 1-17).

www.irma-international.org/article/katana-towards-patching-runtime-part/46149

Reliability Modeling and Assessment for Open Source Cloud Software: A Stochastic Approach
Yoshinobu Tamuraand Shigeru Yamada (2014). Handbook of Research on Architectural Trends in Service-

Driven Computing (pp. 718-742).

www.irma-international.org/chapter/reliability-modeling-and-assessment-for-open-source-cloud-software/115451

http://www.igi-global.com/chapter/domain-specific-language-describing-grid/29396
http://www.irma-international.org/article/text-dependent-and-text-independent-writer-identification-approaches/297514
http://www.irma-international.org/chapter/autonomic-business-driven-dynamic-adaptation/66797
http://www.irma-international.org/chapter/language-engineering-mobile-software/66466
http://www.irma-international.org/article/katana-towards-patching-runtime-part/46149
http://www.irma-international.org/chapter/reliability-modeling-and-assessment-for-open-source-cloud-software/115451

