
152  

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.15
Automated Software Testing

Paula Donegan
Instituto Atlântico, Brazil

Liane Bandeira
Instituto Atlântico, Brazil

Cristina Matos
Instituto Atlântico, Brazil

Paula Luciana da Cunha
Instituto Atlântico, Brazil

Camila Maia
Instituto Atlântico, Brazil

Abstract

This chapter approaches paramount aspects re-
lated to test automation, introducing the impor-
tance of implementation in the software market 
and essential bases, such as adjustment to the 
organizational reality and establishment of an 
efficient strategy. Types of tools and directives 
for a successful implantation are presented. Test 
automation has been considered the main measure 
taken to enhance test efficiency — fundamental 
in the software-development process. Responsible 
for verifying and/or validating the quality of the 
executable product compared to performed docu-
mentation and client requirements. Therefore, 
with the chapter content here provided, we aim 

to provide the reader with an understanding of 
test automation and grant relevant orientations to 
assist implementing it.

Introduction

Given the growing complexity of applications 
and new technologies, such as the advent of the 
client/server environment (in particular Web ap-
plications), the effort necessary for application 
testing has increased.

To assure that software conforms to require-
ments, various test stages may be identified: unit, 
integration, system, and acceptance. Bugs’ impact 
increases with the evolution of the test stage in 



  153

Automated Software Testing

which they are found, in other words, the cost 
of detecting errors during unit test is less than 
integration and system tests.

Each use case has test objects that may need 
to be retested several times during the project, 
demanding resources. These retests normally 
are required when a new functionality is added 
or when a bug is corrected, because there is no 
guarantee that the changes made will impact 
negatively on other parts already constructed. 
Therefore, the assistance of a tool capable of 
repeating a test already executed in the past is 
quite interesting.

Besides, multiple execution paths and diversity 
of possible inputs and outputs of an application 
complicate the execution of manual tests, which 
may be simplified by automation. In addition, per-
formance, load and volume tests are examples of 
tests that are difficult to be accomplished without 
the help of automated testing tools. There are also 
some types of tests that are almost impossible 
to be executed manually, for example, a test to 
verify a system’s performance with thousands or 
millions of simultaneous accesses or having to 
use an enormous amount of data. 

Automating software tests speeds development 
and reduces retesting effort spent in each stage, 
thus reducing time and cost. However, this reduc-
tion is normally noticed only after a while, because 
there are high investments in the implantation 
stage, such as organizational needs, training, and 
tools acquisition. Automation allows increase of 
amplitude and depth of developed tests.

Testing automation might or might not be 
helpful. It allows one to take advantage of idle 
machine time (i.e., the period in which the devel-
oper is not working) to execute tests. Therefore, 
test execution can be more effective and waste 
less resources.

Background

Automated software testing is an activity that 
seems to have obvious benefits: tests may be ex-
ecuted swiftly, are more consistent, and may be 
repeated various times without increasing cost. 
However, it is not a trivial activity and requires 
effective planning and elaborate test-case defini-
tion, as well as other characteristics, which will 
be explained in more detail later in this chapter. 
Benefits and risks, possible tools, an implantation 
methodology and directives for script generation 
are also described.

An automated test between different phases 
of the development process has the purpose of 
verifying if what was constructed from that 
stage backwards is correct and is adequate as an 
input for the next stage. An example would be a 
programmer testing a software component before 
doing the integration of components.

The generated test process is automated and 
capable of ensuring that the system logically 
operates according to the code by executing the 
functions through a series of test cases. 

With a tool, you can expect the test script to 
conduct the verification processes and return 
results that verify whether the product under test 
meets code logic. 

A test engineer usually follows a procedure 
to decide whether a problem found is a defect. 
However, an automated test tool makes decisions 
based on methods invocation, during which it 
detects errors and defects. Thus, the tool makes an 
effort to remind the developers of the importance 
of adopting a good error-handling technique.

But, can a tool verify that all test tasks have 
been performed? The answer is based on the 
requirements of your organization and on the 
architecture of the software project (Li & Wu, 
2004).



 

 

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/automated-software-testing/29387

Related Content

A Survey to Nature Inspired Soft Computing
Deepak Kumar, Sushil Kumar, Rohit Bansaland Parveen Singla (2017). International Journal of Information

System Modeling and Design (pp. 112-133).

www.irma-international.org/article/a-survey-to-nature-inspired-soft-computing/199006

Secure by Design: Developing Secure Software Systems from the Ground Up
Haralambos Mouratidisand Miao Kang (2011). International Journal of Secure Software Engineering (pp.

23-41).

www.irma-international.org/article/secure-design-developing-secure-software/58506

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence

Systems
Jaemin Park (2012). Advanced Design Approaches to Emerging Software Systems: Principles,

Methodologies and Tools  (pp. 173-194).

www.irma-international.org/chapter/methodology-uicc-based-security-services/55440

Autonomic Business-Driven Dynamic Adaptation of Service-Oriented Systems and the WS-

Policy4MASC Support for Such Adaptation
Vladimir Tosic (2012). Theoretical and Analytical Service-Focused Systems Design and Development (pp.

140-156).

www.irma-international.org/chapter/autonomic-business-driven-dynamic-adaptation/66797

Towards Deep Learning-Based Approach for Detecting Android Malware
Jarrett Booz, Josh McGiff, William G. Hatcher, Wei Yu, James Nguyenand Chao Lu (2019). International

Journal of Software Innovation (pp. 1-24).

www.irma-international.org/article/towards-deep-learning-based-approach-for-detecting-android-malware/236204

http://www.igi-global.com/chapter/automated-software-testing/29387
http://www.irma-international.org/article/a-survey-to-nature-inspired-soft-computing/199006
http://www.irma-international.org/article/secure-design-developing-secure-software/58506
http://www.irma-international.org/chapter/methodology-uicc-based-security-services/55440
http://www.irma-international.org/chapter/autonomic-business-driven-dynamic-adaptation/66797
http://www.irma-international.org/article/towards-deep-learning-based-approach-for-detecting-android-malware/236204

