
122

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.13
Software Engineering and HCI

Shawren Singh
University of South Africa, South Africa

Alan Dix
Lancaster University, UK

Introduction

Technology Affecting CBISs

As computer technology continues to leapfrog
forward, CBISs are changing rapidly. These
changes are having an enormous impact on the
capabilities of organizational systems (Turban,
Rainer, & Potter, 2001). The major ICT develop-
ments affecting CBISs can be categorized in three
groupings: hardware-related, software-related,
and hybrid cooperative environments.

Hardware-Related

Hardware consists of everything in the “physical
layer” of the CBISs. For example, hardware can
include servers, workstations, networks, telecom-
munication equipment, fiber-optic cables, hand-
held computers, scanners, digital capture devices,
and other technology-based infrastructure (Shelly,
Cashman, & Rosenblatt, 2003). Hardware-related
developments relate to the ongoing advances in
the hardware aspects of CBISs.

Software-Related

Software refers to the programs that control the
hardware and produce the desired information
or results (Shelly et al., 2003). Software-related
developments in CBIS are related to the ongoing
advances in the software aspects of computing
technology.

Hybrid Cooperative Environments

Hybrid cooperative environments developments
are related to the ongoing advance in the hardware
and software aspects of computing technology.
These technologies create new opportunities on
the Web (e.g., multimedia and virtual reality)
while others fulfill specific needs on the Web
(e.g., electronic commerce (EC) and integrated
home computing).

These ICT developments are important com-
ponents to be considered in the development of
CBIS’s. As new types of technology are developed,
new standards are set for future development.
The advent of hand-held computer devices is one
such example.

 123

Software Engineering and HCI

Background

A Software Engineering View

In an effort to increase the success rate of in-
formation systems implementation, the field of
software engineering (SE) has developed many
techniques. Despite many software success sto-
ries, a considerable amount of software is still
being delivered late, over budget, and with residual
faults (Schach, 2002).

The field of SE is concerned with the develop-
ment of software systems using sound engineering
principles for both technical and non-technical
aspects. Over and above the use of specification,
and design and implementation techniques, human
factors and software management should also be
addressed. Well-engineered software provides
the service required by its users. Such software
should be produced in a cost-effective way and
should be appropriately functional, maintainable,
reliable, efficient, and provide a relevant user
interface (Pressman, 2000a; Shneiderman, 1992;
Whitten, Bentley, & Dittman, 2001).

There are two major development methodolo-
gies that are used to develop IS applications: the
traditional systems development methodology
and the object-oriented (OO) development ap-
proach.

The traditional systems approaches have the
following phases:

•	 Planning: this involves identifying business
value, analysing feasibility, developing a
work plan, staffing the project, and control-
ling and directing the project.

•	 Analysis: this involves information gath-
ering (requirements gathering), process
modeling and data modeling.

•	 Design: this step is comprised of physical
design, architecture design, interface de-
sign, database and file design, and program
design.

•	 Implementation: this step requires both
construction and installation.

There are various OO methodologies. Al-
though diverse in approach, most OO develop-
ment methodologies follow a defined system
development life cycle. The various phases are
intrinsically equivalent for all of the approaches,
typically proceeding as follows:

•	OO Analysis Phase (determining what the
product is going to do) and extracting the objects
(requirements gathering), OO design phase, OO
programming phase (implemented in appropriate
OO programming language), integration phase,
maintenance phase and retirement (Schach,
2002).

One phase of the SE life cycle that is common
to both the traditional development approach and
the OO approach is requirements gathering. Re-
quirements’ gathering is the process of eliciting
the overall requirements of the product from the
customer (user). These requirements encompass
information and control need, product function
and behavior, overall product performance, de-
sign and interface constraints, and other special
needs. The requirements-gathering phase has
the following process: requirements elicitation;
requirements analysis and negotiation; require-
ments specification; system modeling; require-
ments validation; and requirements management
(Pressman, 2000a).

Despite the concerted efforts to develop a suc-
cessful process for developing software, Schach
(2002) identifies the following pitfalls:

•	 Traditional engineering techniques cannot
be successfully applied to software devel-
opment, causing the software depression
(software crisis). Mullet (1999) summarizes
the software crisis by noting that software
development is seen as a craft rather than
an engineering discipline. The approach

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-engineering-hci/29385

Related Content

Adapting a Requirements Engineering Process by Key Factors Estimation
Graciela Dora Susana Hadad, Jorge Horacio Doornand Viviana Alejandra Ledesma (2022). Research

Anthology on Agile Software, Software Development, and Testing (pp. 709-725).

www.irma-international.org/chapter/adapting-a-requirements-engineering-process-by-key-factors-estimation/294491

Software Engineering Security Based on Business Process Modeling
Joseph Barjis (2010). International Journal of Secure Software Engineering (pp. 1-17).

www.irma-international.org/article/software-engineering-security-based-business/43923

Autonomous Drones and Their Integration With AI Technologies
 Eugene Berna, Prithi Samuel, S. Ravikumarand K. Vijay (2024). The Convergence of Self-Sustaining

Systems With AI and IoT (pp. 64-84).

www.irma-international.org/chapter/autonomous-drones-and-their-integration-with-ai-technologies/345506

Teaching Property-Based Testing: Why and How
Isabel Azevedoand Nuno Malheiro (2020). Software Engineering for Agile Application Development (pp.

230-250).

www.irma-international.org/chapter/teaching-property-based-testing/250445

Classification of Bug Injected and Fixed Changes Using a Text Discriminator
Akihisa Yamadaand Osamu Mizuno (2015). International Journal of Software Innovation (pp. 50-62).

www.irma-international.org/article/classification-of-bug-injected-and-fixed-changes-using-a-text-discriminator/121547

http://www.igi-global.com/chapter/software-engineering-hci/29385
http://www.irma-international.org/chapter/adapting-a-requirements-engineering-process-by-key-factors-estimation/294491
http://www.irma-international.org/article/software-engineering-security-based-business/43923
http://www.irma-international.org/chapter/autonomous-drones-and-their-integration-with-ai-technologies/345506
http://www.irma-international.org/chapter/teaching-property-based-testing/250445
http://www.irma-international.org/article/classification-of-bug-injected-and-fixed-changes-using-a-text-discriminator/121547

