
 �

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.1
A Historical Analysis of the

Emergence of Free Cooperative
Software Production

Nicolas Jullien
LUSSI TELECOM Bretagne-M@rsouin, France

Introduction

Whatever its name, Free/Libre or Open Source
Software (FLOSS), diffusion represents one of the
main evolutions of the Information Technology
(IT) industry in recent years. Operating System
Linux, or Web server Apache (more than 60%
market share on its market), database MySQL or
PHP languages are some examples of broadly-
used FLOSS programs. One of the most original
characteristics of this movement is its collective,
cooperative software development organization
in which a growing number of firms is involved
(some figures in Lakhani & Wolf (2005)). Of
course, programs, because they are codified in-
formation, are quite easy to exchange, and make
the cooperation easier than in other industries.
But, as pointed out by Stallman (1998), if sharing
pieces of software within firms was a dominant
practice in the 1950’s, it declined in the 1970’s,
and almost disappeared in the 1980’s, before
regaining and booming today.

This article aims at explaining the evolution
(and the comeback) of a cooperative, non-market
production.

In the first part, we explain the decrease of
cooperation as a consequence of the evolution of
the computer users, of their demand, and of the
industrial organization constructed to meet this
demand. This theoretical and historical framework
is used in the second part to understand the re-
newal of a cooperative organization, the FLOSS
phenomenon, first among computer-literate users,
and then within the industry.

Software in the History of
the Computer Industry

Among the few works of reference existing on the
evolution of the computer industry, we use the
following as our basis: Mowery (1996), Genthon
(1995), and Dréan (1996). Richardson (1997) and

�

A Historical Analysis of the Emergence of Free Cooperative Software Production

Horn (2004) have analyzed the specificities of the
software industry.

If these authors do not agree on the number of
periods that this industry has gone through since
its birth at the end of World War II, they agree on
two main ruptures:

•	 The arrival of the IBM 360 series, in the
early 1960’s, opening the mainframe and
mini period when, thanks to the implemen-
tation of an operating system, a standard
machine could be sold to different clients,
but also a program could be used on a fam-
ily of computers, of different power, and not
abandoned when the machine was obsolete;
and

•	 The arrival of the PC, and specifically the
IBM PC, in the early 1980’s, when the
computer became a personal information
management tool, produced by different
actors.

Each of these periods is characterized by a
technology which has allowed firms to propose
new products to new consumers, changing the
dominant producer-user relations. This has had
an impact on the degree of cooperation in the
software production.

Period 1: The Industry of
Prototypes – Start: Mid-1940’s

As pointed out by Langlois and Mowery (1996),
there was no real differentiation between hardware
and software in that period, and computers were
“unique” products, built for a unique project.
They were computing tools, or research tools,
for research centers (often military in nature, like
H-bomb research centers). Each project allowed
producers and users to negotiate the characteris-
tics of the machine to be built. Also, the software
part was not seen as an independent source of
revenue by firms.

Production is Research

Thus, computer and software development were
a research activity, conducted by high-skilled
users, or Von Hippel (VH) users, in reference
to Von Hippel’s (1988) user who has the compe-
tences to innovate, and being the one who knows
best his needs, is the best to do so (Dréan, 1996;
Genthon, 1995).

Research is Cooperation

In that non-profit, research environment, we think
that cooperation was rather natural, allowing
firms to decrease their research costs and better
answer to users’ requirements. But this coopera-
tion was mainly bilateral cooperation, between the
constructor and the user. There was no network
to exchange punch cards.

Period 2: Industrialization – Start:
Early 1960’s

Thanks to technological progress (miniaturization
of transistors, compilers, and operating systems),
the scope of use extended in two directions in that
period: the reduction in size and in the price of
computers. This raised the number of organiza-
tions that were able to afford a computer.

According to Genthon (1996), the main
evolution characterizing the period was that the
same program could be implemented in differ-
ent computers (from the same family), allowing
the program to evolve, to grow in size, and to
serve a growing number of users. The computer
had become a tool for centralized processing of
information for organizations (statistics, payment
of salaries, etc.).

The Emergence of a Software Industry

In this period, some pieces of software became
strategic for producers, especially the operating

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/historical-analysis-emergence-free-

cooperative/29373

Related Content

JavaSPI: A Framework for Security Protocol Implementation
Matteo Avalle, Alfredo Pironti, Davide Pozzaand Riccardo Sisto (2011). International Journal of Secure

Software Engineering (pp. 34-48).

www.irma-international.org/article/javaspi-framework-security-protocol-implementation/61152

Intelligent Software Agents with Applications in Focus
Mario Jankovic-Romano, Milan Stankovicand Uroš Krcadinac (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 1426-1433).

www.irma-international.org/chapter/intelligent-software-agents-applications-focus/29454

Reuse across Multiple Architectures
Indika Kumaraand Chandana Gamage (2014). Software Design and Development: Concepts,

Methodologies, Tools, and Applications (pp. 1927-1955).

www.irma-international.org/chapter/reuse-across-multiple-architectures/77786

Design and Transformation of a Domain-Specific Language for Reconfigurable Conveyor

Systems
Kyoungho An, Adam Trewyn, Aniruddha Gokhaleand Shivakumar Sastry (2013). Formal and Practical

Aspects of Domain-Specific Languages: Recent Developments (pp. 553-571).

www.irma-international.org/chapter/design-transformation-domain-specific-language/71832

Factors Affecting Successful Implementation of Smart Manufacturing Systems
Jaehyeon Junand Insu Cho (2022). International Journal of Software Innovation (pp. 1-18).

www.irma-international.org/article/factors-affecting-successful-implementation-of-smart-manufacturing-systems/301569

http://www.igi-global.com/chapter/historical-analysis-emergence-free-cooperative/29373
http://www.igi-global.com/chapter/historical-analysis-emergence-free-cooperative/29373
http://www.irma-international.org/article/javaspi-framework-security-protocol-implementation/61152
http://www.irma-international.org/chapter/intelligent-software-agents-applications-focus/29454
http://www.irma-international.org/chapter/reuse-across-multiple-architectures/77786
http://www.irma-international.org/chapter/design-transformation-domain-specific-language/71832
http://www.irma-international.org/article/factors-affecting-successful-implementation-of-smart-manufacturing-systems/301569

