
Software Measurement 191

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

Software Measurement

The problem of measurement in software engineering has been addressed by
many authors, and one of the most common questions is, “Can we learn from
measurement in physics and can we transform this to software engineering
measurement?” (Zuse, 1997, 1998).

An engineering measure, from the physical point of view, is relevant if it can
quantify the object under measurement, since qualitative measures usually are
considered too coarse. The problem arises when we shift this concept in
software engineering, where nearly all the possible measurements are qualita-
tive ones. All of the characteristics defined by ISO9126 (1991) are qualitative
and not directly related to precise physical or tangible phenomena.

On the other hand, a wide skepticism of using numerical values is diffused,
because it can be hard to give the requested semantic to the number.

Metrics, that are the measures performed on code, can be split into two
categories: metrics for software complexity/size measurement and effort esti-
mation, and metrics for qualitative characteristics evaluation. In the first part of
the chapter, the former type of metrics is discussed, while in the second part,
a general overview of quality in use by metrics will be performed. Apart from
this general distinction, a more accurate taxonomy of the software metrics is
reported in order to classify them on the basis of the applicability field in which
they can be adopted.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.irm-press.com

ITB11782
IRM PRESS

This chapter appears in the book, Skills for Managing Rapidly Changing IT Projects
 by Fabrizio Fioravanti © 2006, Idea Group Inc.

192 Fioravanti

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Metric Taxonomy

Metrics can be classified according to different criteria. A first classification can
be performed on the basis of its capability to predict and/or to evaluate a
posteriori system characteristics.

The main difference between these two classes of metrics is in the use or not
of the functional code. In general, predictive metrics are evaluated only on the
basis of the class interface (e.g., C or C++ Header files, Java class definition,
without inline code, etc.), while a posteriori metrics also need class code
(method implementation).

In general, a posteriori metrics consider all class aspects — attributes, methods
interface, and method implementation (both locally defined and inherited).
Predictive metrics also can be evaluated, if the implementation phase has not
been performed yet, such as in the early phase of system development. These
metrics also can be used to predict the adaptive maintenance effort by knowing
only the interface that classes will have at the end of the system adaptation. This
can be very useful for evaluating the adaptive maintenance effort needed during
its planning phase.

A metric is either able to measure directly a software characteristic or not; thus,
it can be classified as direct or indirect. Direct metrics should produce a direct
measure of parameters under consideration; for example, the number of Lines
of Code (LOC) for estimating the program length in terms of code written.
Indirect metrics usually are related to high-level features; for example, the
number of system classes can be supposed to be related to the system
complexity by means of a mathematical relationship, while LOC (as an indirect
metric) is related typically to development effort. Thus, the same measure can
be considered as a direct and/or an indirect metric, depending on its adoption.
Indirect metrics have to be validated for demonstrating their relationships with
the corresponding high-level features. This process consists of (1) evaluating
parameters of metrics (e.g., weights and coefficients) and (2) verifying the
robustness of the identified model against real cases. The model can be linear
or not, and it must be identified by using both mathematical and statistical
techniques (Briand, 2000a, 2000b; Nesi, 1998; Rousseeuw, 1987;
Schneidewind, 1992, 1994).

Metrics are frequently reclassified on the basis of the phase in or for which they
can produce significant estimations; therefore, a distinction can be made among
analysis, design, and code metrics. An exact classification of metrics, according

31 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/project-maintenance/29010

Related Content

Application of Fuzzy Logic to Fraud Detection
Mary Jane Lenardand Pervaiz Alam (2009). Encyclopedia of Information Science and

Technology, Second Edition (pp. 177-181).

www.irma-international.org/chapter/application-fuzzy-logic-fraud-detection/13569

Access to the Living Room: Triple Play and Interactive Television Reshaping

the Producer/Consumer Relation
Eggo Muller (2008). Information Communication Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 1846-1854).

www.irma-international.org/chapter/access-living-room/22780

Positive Psychology in Information Technology Project Management: The

Case of Bad News Reporting
Joseph Natovich, Zeev Derzyand Rachel Natovich (2013). International Journal of

Information Technology Project Management (pp. 35-50).

www.irma-international.org/article/positive-psychology-in-information-technology-project-

management/102479

Derivation of an Agile Method Construction Set to Optimize the Software

Development Process
Jerome Vogeland Rainer Telesko (2020). Journal of Cases on Information

Technology (pp. 19-34).

www.irma-international.org/article/derivation-of-an-agile-method-construction-set-to-optimize-

the-software-development-process/256595

Cultural Impact on Global Knowledge Sharing
Timothy Sheaand David Lewis (2007). Information Resources Management: Global

Challenges (pp. 262-281).

www.irma-international.org/chapter/cultural-impact-global-knowledge-sharing/23045

http://www.igi-global.com/chapter/project-maintenance/29010
http://www.igi-global.com/chapter/project-maintenance/29010
http://www.irma-international.org/chapter/application-fuzzy-logic-fraud-detection/13569
http://www.irma-international.org/chapter/access-living-room/22780
http://www.irma-international.org/article/positive-psychology-in-information-technology-project-management/102479
http://www.irma-international.org/article/positive-psychology-in-information-technology-project-management/102479
http://www.irma-international.org/article/derivation-of-an-agile-method-construction-set-to-optimize-the-software-development-process/256595
http://www.irma-international.org/article/derivation-of-an-agile-method-construction-set-to-optimize-the-software-development-process/256595
http://www.irma-international.org/chapter/cultural-impact-global-knowledge-sharing/23045

