
DOI: 10.4018/IJISP.2022010103

International Journal of Information Security and Privacy
Volume 16 • Issue 1

﻿
Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

1

Predicting Security-Vulnerable
Developers Based on Their Techno-
Behavioral Characteristics
M. D. J. S. Goonetillake, School of Computing, University of Colombo, Sri Lanka

 https://orcid.org/0000-0002-3864-3699

Rangana Jayashanka, School of Computing, University of Colombo, Sri Lanka

S. V. Rathnayaka, School of Computing, University of Colombo, Sri Lanka

ABSTRACT

Assigning developers for highly secured software projects requires identifying developers’ tendency
to contribute towards vulnerable software codes called developer-centric security vulnerability to
mitigate issues on human resource management, financial, and project timelines. There are problems
in assessing the previous codebases in evaluating the developer-centric security vulnerability level
of each developer. Thus, this paper suggests a method to evaluate this through the techno-behavioral
features of their previous projects. Consequently, the authors present results of an exploratory study
of the developer-centric security vulnerability level prediction using a dataset of 1,827 developers by
logically selecting 13 techno-behavioral features. The results depict that there is a correlation between
techno-behavioral features and developer-centric security vulnerability with 89.46% accuracy. This
model enables to predict developer-centric security vulnerability level of any developer if the required
techno-behavioral features are available, avoiding the analysis of his/her previous codebases.

Keywords
Decision Tree, Developer-Centric Security Vulnerability, Logic Regression, Machine, Naïve Bayes, Random
Forest, Support Vector Vector Machine, Techno-Behavioral Features

INTRODUCTION

Computer software should satisfy two types of requirements in the application domain namely
functional and non-functional requirements. Both are equally important to be satisfied regardless
of their operational industry domain. Moreover, software quality has been described by many
characteristic aspects. There are several metrics for software quality that can be used to evaluate the
qualities of software such as scalability, security, reliability, and usability (Gorton, 2011). Among
all these quality metrics, software security has been described as one of the most significant quality
attribute (Stephenson et al., 1992) since, a security vulnerability can be a cause of a huge disaster
which can lose billion dollars of assets (Willetts, 2014) to an organization or even lives (Csulak et

International Journal of Information Security and Privacy
Volume 16 • Issue 1

2

al., 2017). Generally, functional issues in a software which can be considered as causing defects in
software are possible to be tested and validated by executing test scenarios of the business logic.
However, non-functional issues which can be considered as causing vulnerability in the software are
difficult to identify since it may not get exposed by the execution of predetermined test scenarios
(Zimmermann et al., 2010; Krsul, 1998). It should be noted that the term ‘software vulnerability’ is
mainly referred to in the computing domain concerning a security flaw, glitch, or weakness found in
software or in an operating system (OS) that can lead to security concerns.

Although many Computer-Aided Software Engineering (CASE) tools are available, humans still
dominate as the core contributors of the software development process. To this end, it is an inevitably
applicable scenario that software is vulnerable to functional and non-functional defects due to human
mistakes. Software defects and vulnerabilities have many similarities since both are incurred due to
human mistakes. However, vulnerabilities differ from defects since they are actively observed by the
attackers with malicious and criminal intent while defects are exposed through the valid use cases of
its normal usage (Krsul, 1998). The vulnerability of a software application could occur at any stage
of the software development life cycle and may be introduced due to various reasons such as invalid
requirement specification, weak architectural designs, weak and vulnerable implementation techniques,
and algorithms and weak test scenarios executed. In this study, the focus is scoped on vulnerabilities
that the developer has caused or contributed to source code of the software. Each software developer
has a unique skill level, experience, capacity, technology interests, domain interests, and many other
characteristics which can affect the overall quality of the software positively or negatively that he/
she develops.

In large-scale software development projects, it is important, but a complex task to ensure that
all developers are skilled and experienced enough to contribute and collaborate towards the success
of the project avoiding any security vulnerabilities in software throughout the development lifecycle.
Thus, it will be a challenging task to evaluate and identify a developer’s tendency to contribute
towards vulnerable software codes which are for convenience termed as a developer-centric security
vulnerability in this paper from this point onwards. Prior knowledge of developer-centric security
vulnerability is significant when there is a need for selecting developer teams for highly secured
mission-critical software development projects. To this end, it would be better if developer-centric
security vulnerability could be identified in advance and taken as a parameter into the developer
selection criteria at the very initial stage of the software project. This is because developers with
less or no vulnerability prediction may minimize the risk of causing security vulnerabilities in the
final software product. Otherwise, it will be a time-consuming and tedious task to investigate the
accumulating codebase of an ongoing software project for security vulnerability. Moreover, this
investigation process must be done on each developer basis identifying individual code fragments
in the codebase along with their vulnerabilities. If the developer code contribution has not been up
to the security standards or practices it may cause practical issues in human resource management
leading to substitutions or swaps in developer teams and their responsibilities. This is not a feasible
task in the context of certain projects such as highly secured mission-critical software development
projects with strict project timelines and many other technical and non-technical constraints and
may also add a significant amount of extra cost/overhead to the software project. It should also be
noted that detecting the security vulnerability of ongoing software projects requires special tools to
have access to the codebase of the project and is more difficult than identifying a software defect
that may occur due to a functional issue (Zimmermann et al., 2010; Krsul, 1998). Adding to this
complexity, the accessibility of the codebase of highly secured mission-critical projects may very
well subject to restrictions. Hence, it emphasizes the requirement to have a mechanism to identify
the potential developer-centric vulnerability in advance thus mitigating the security vulnerability of
ongoing software projects.

A probable scenario is to analyze the quality features of the previously developed software
codebase to find out the responsible developers who have contributed security-wise weak code

24 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/predicting-security-vulnerable-developers-

based-on-their-techno-behavioral-characteristics/284048

Related Content

Wearable Computing: Security Challenges, BYOD, Privacy, and Legal

Aspects
John Lindströmand Claas Hanken (2014). Analyzing Security, Trust, and Crime in the

Digital World (pp. 96-120).

www.irma-international.org/chapter/wearable-computing/103813

User Perceptions of Security Technologies
Douglas M. Kline, Ling Heand Ulku Yaylacicegi (2011). International Journal of

Information Security and Privacy (pp. 1-12).

www.irma-international.org/article/user-perceptions-security-technologies/55376

A Privacy Protection Model for Patient Data with Multiple Sensitive Attributes
Tamas S. Gal, Zhiyuan Chenand Aryya Gangopadhyay (2008). International Journal

of Information Security and Privacy (pp. 28-44).

www.irma-international.org/article/privacy-protection-model-patient-data/2485

Trustworthy Web Services: An Experience-Based Model for Trustworthiness

Evaluation
Stephen J.H. Yang, Blue C.W. Lan, James S.F. Hsiehand Jen-Yao Chung (2009).

Techniques and Applications for Advanced Information Privacy and Security:

Emerging Organizational, Ethical, and Human Issues (pp. 245-261).

www.irma-international.org/chapter/trustworthy-web-services/30109

A "One-Pass" Methodology for Sensitive Data Disk Wipes
Doug Whiteand Alan Rea (2009). Handbook of Research on Information Security and

Assurance (pp. 193-201).

www.irma-international.org/chapter/one-pass-methodology-sensitive-data/20650

http://www.igi-global.com/article/predicting-security-vulnerable-developers-based-on-their-techno-behavioral-characteristics/284048
http://www.igi-global.com/article/predicting-security-vulnerable-developers-based-on-their-techno-behavioral-characteristics/284048
http://www.igi-global.com/article/predicting-security-vulnerable-developers-based-on-their-techno-behavioral-characteristics/284048
http://www.irma-international.org/chapter/wearable-computing/103813
http://www.irma-international.org/article/user-perceptions-security-technologies/55376
http://www.irma-international.org/article/privacy-protection-model-patient-data/2485
http://www.irma-international.org/chapter/trustworthy-web-services/30109
http://www.irma-international.org/chapter/one-pass-methodology-sensitive-data/20650

