Chapter X

A Reference Model for Savings Banks

Annett Mäuser, IBM Global Business Services, Germany

Abstract

With approximately 17,490 well-defined modeling objects, the SKÖ-Datenmodell is probably the most extensive reference data model in German for the banking area. So far, this reference data model has been used in about 30 projects describing different subject areas. The detailed project data models that have been derived from these projects have been reintegrated into the generic reference data model, as far as the results are applicable to the entire Sparkassenorganisation. The SKÖ-Datenmodell was initially developed approximately 15 years ago. It is derived from the financial services data model (FSDM), which has been provided by IBM. The FSDM is a reference data model which is generally valid for the banking area. In contrast to the FSDM, the SKÖ-Datenmodell is specialized for the requirements of the Sparkassenorganisation. The basic elements of the reference data model are a conceptual design of data model abstraction levels, an extensive methods and procedures handbook with precise quality requirements and an integrated tool support by mi4 and Rochade. The different levels of the SKÖ-Datenmodell and the use of these levels in practice are described in this chapter.
The Conceptual Design of Levels of the SKO-Datenmodell

The SKO-Datenmodell covers approximately 80% of the business data that are required by application development projects in the Sparkassenorganisation. The data model is subdivided into the five levels A, B, C, C' and D (Figure 1). The A-Level is a very compact level with business data. This level covers the architecture view. The following levels become more extensive and the contents become more and more detailed in the direction of a technical view.

The content of the levels A, B and C are developed and maintained by a central group hosted by the SIZ. The models of these three levels are available for all members of the Sparkassenorganisation. The C’- and D-level contents are developed by the various projects of the joint use centers of the Sparkassenorganisation.

The A-Level (Architecture View)

The A-Level of the SKO-Datenmodell consists of nine core entities (Table 1). These core entities represent containers for the business terms in the banking area. The business terms are assigned to their proper places on the highest level. Each term belongs only to one of the nine core entities. Each core entity has a detailed definition and description as well as examples to support the classification.

The nine core entities are a useful instrument at the beginning of application development projects. During the definition of requirements, the project contents can be delimited by assigning the business terms to the core entities. However, the A-Level is also a good place to define responsibilities in a project. In one of the last application development projects with the SKO-Datenmodell, the project teams had been organized by the core entities. The “customer relationship management” team was responsible for the core entities involved...
Related Content

System Architectures for Sensor-Based Dynamic Remaining Shelf-life Prediction
[www.irma-international.org/article/system-architectures-for-sensor-based-dynamic-remaining-shelf-life-prediction/236644/](www.irma-international.org/article/system-architectures-for-sensor-based-dynamic-remaining-shelf-life-prediction/236644/)

Design of Repairable Processes
[www.irma-international.org/chapter/design-repairable-processes/19694/](www.irma-international.org/chapter/design-repairable-processes/19694/)

Supply Chain Management Practices, Competitive Advantage and Organizational Performance: A Confirmatory Factor Model

A Hybrid Approach Based on LP Metric Method and Genetic Algorithm for the Vehicle-Routing Problem with Time Windows, Driver-Specific Times, and Vehicles-Specific Capacities

Measuring the Effect of the Rules and Regulations on Global Malmquist Index
[www.irma-international.org/article/measuring-effect-rules-regulations-global/55862/](www.irma-international.org/article/measuring-effect-rules-regulations-global/55862/)