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ABSTRACT
This chapter introduces two different ways to integrate Evolutionary Computation
Components in Ant Colony Optimization (ACO) Meta-heuristic. First of all, the ACO
meta-heuristic is introduced and compared to Evolutionary Computation to notice
their similarities and differences. Then two new models of ACO algorithms that include
some Evolutionary Computation concepts (Best-Worst Ant System and exchange of
memoristic information in parallel ACO algorithms) are presented with some empirical
results that show improvements in the quality of the solutions when compared with more
basic and classical approaches.

INTRODUCTION
Complex combinatorial optimization problems arise in many different fields such as

economy, commerce, engineering or industry. These problems are so complex that there
is no algorithm known that solves them in polynomial time (Garey & Johnson, 1979).
These kinds of problems are called NP-hard.
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Still, many of these problems have to be solved in a huge number of practical
settings and therefore a large number of algorithmic approaches were proposed to tackle
them. The existing techniques can roughly be classified into exact and approximate
algorithms. Exact algorithms try to find an optimal solution and to prove that the solution
obtained is actually an optimal one. These algorithms include techniques such as
backtracking, branch and bound, dynamic programming, and so forth (Brassard &
Bratley, 1996; Papadimitriou & Steiglitz, 1982). Because exact algorithms show poor
performance for many problems, several types of approximate algorithms that provide
high quality solutions to combinatorial problems in short computation time were
developed.

Approximate algorithms can be classified into two main families: deterministic and
probabilistic. Deterministic algorithms always produce the same solution when the
starting conditions are the same, while the latter algorithms are characterized by a non-
deterministic behavior; that is, for a specific problem and in the same execution
conditions (same seeds from the random number generators, same values of the different
parameters, same number of iterations, and so on), they return different solutions.

A different classification for approximate algorithms distinguishes between con-
struction algorithms and local search algorithms. The former are based on generating
solutions from scratch by adding solution components step by step. The best- known
example is greedy construction heuristics (Brassard & Bratley, 1996). Their advantage
is speed: they are typically very quick and, in addition, often return reasonably good
solutions. However, these solutions are not guaranteed to be optimal with respect to
small local changes. Local search algorithms repeatedly try to improve the current
solution by movements to (hopefully better) neighboring solutions. The simplest case
are iterative improvement algorithms: if in the neighborhood of the current solution s, a
better solution s’ is found, it replaces the current solution and the search is continued
from s’; if no better solution is found, the algorithm terminates in a local optimum.
Nowadays, hybridizations of both techniques are usually used: any construction
algorithm builds an initial solution, which is then improved by a local search algorithm.

Unfortunately, iterative improvement algorithms may become stuck in poor quality
local optima. To allow for them a further improvement in solution quality, in the last two
decades the research in this field has moved attention to the design of general-purpose
techniques for guiding underlying, problem-specific construction or local search heu-
ristics. These techniques are called meta-heuristics (Glover & Kochenberger, 2003). They
involve concepts that can be used to define heuristic methods; that is, meta-heuristics
can be seen as a general algorithmic framework that can be applied to different (combi-
natorial) optimization problems with relatively few modifications if given some underly-
ing, problem specific heuristic method. In fact, meta-heuristics are now widely recognized
as the most promising approaches for attacking hard combinatorial optimization prob-
lems (Aarts & Lenstra, 1997; Michalewicz & Fogel, 2000; Reeves, 1995).

Heuristics Based on Nature or Bioinspired Algorithms (Colorni, Dorigo, Maffioli,
Maniezzo, Righini & Trubian, 1996) are approximate algorithms that have achieved good
results. All of them share at least one quality: they operate simulating some natural
processes, although some of them have evolved in order to increase their effectiveness.
However, these improvements sometimes include some aspects that do not have a direct
natural inspiration.
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