Chapter X

Pattern Management: Practice and Challenges

Barbara Catania, University of Genoa, Italy
Anna Maddalena, University of Genoa, Italy

Abstract

Knowledge intensive applications rely on the usage of knowledge artifacts, called patterns, to represent in a compact and semantically rich way huge quantities of heterogeneous raw data. Due to pattern characteristics of patterns, specific systems are required for pattern management in order to model, store, retrieve and manipulate patterns in an efficient and effective way. Several theoretical and industrial approaches (relying on standard proposals, metadata management and business intelligence solutions) have already been proposed for pattern management. However, no critical comparison of the existing approaches has been proposed so far. The aim of this chapter is to provide such a comparison. In particular, specific issues concerning pattern management systems, pattern models and pattern languages are discussed. Several parameters are also identified that will be used in evaluating the effectiveness of theoretical and industrial proposals. The chapter is concluded with a discussion concerning additional issues in the context of pattern management.
Introduction

The huge quantity of heterogeneous raw data that we collect from modern, data-intensive applicational environments does not constitute knowledge by itself. A knowledge extraction process and data management techniques are often required to extract from data concise and relevant information that can be interpreted, evaluated and manipulated by human users in order to drive and specialize business decision processing. Of course, since raw data may be heterogeneous, several kinds of knowledge artifacts exist that can represent hidden knowledge. Clusters, association rules, frequent itemsets and symptom-diagnosis correlations are common examples of such knowledge artifacts, generated by data mining applications. Equations or keyword frequencies are other examples of patterns, relevant, for example, in a multimedia context. All those knowledge artifacts are often called patterns. In a more concise and general way, patterns may be defined as compact and rich in semantics representation of raw data. The semantic richness of a pattern is due to the fact that it reveals new knowledge hidden in the huge quantity of data it represents. Patterns are also compact, since they represent interesting correlations among data providing, in many cases, a synthetic, high level description of some data characteristics. Patterns are therefore the knowledge units at the basis of any knowledge intensive application.

Due to their specific characteristics, ad hoc systems are required for pattern management in order to model, store, retrieve, analyze and manipulate patterns in an efficient and effective way.

Many academic groups and industrial consortiums have devoted significant efforts towards solving this problem. Moreover, since patterns may be seen as a special type of metadata, pattern management has also some aspects in common with metadata management.

In general, scientific community efforts mainly deal with the definition of a pattern management framework providing a full support for heterogeneous pattern generation and management, thus providing back-end technologies for pattern management applications. Examples of these approaches are the 3W model (Johnson et al., 2000), the inductive databases approach — investigated in particular in the CINQ project (CINQ, 2001) and the PANDA framework (PANDA, 2001; Catania et al., 2004). In the context of inductive databases, several languages have also been proposed supporting the mining process over relational (or object-relational) data by extending the expressive power of existing data query languages with primitives supporting the mining process. Examples of such approaches are MSQL (Imielinski & Virmani, 1999), MineRule (Meo et al., 1998), DMQL (Han et al., 1996) and ODMQL (Elfeky et al., 2001). On the other hand, industrial proposals mainly deal with standard
Related Content

Transdisciplinary Science and Technology and Service Systems
www.irma-international.org/chapter/transdisciplinary-science-and-technology-and-service-systems/176758/

The Strategic View and Development of Corporate Social Responsibility: The Case Study of Samsung

Causal Modelling and Analysis Evaluation of Online Reputation Management Using Fuzzy Delphi and DEMATEL

The Applications of Simulation Modeling in Emergency Departments: A Review
www.irma-international.org/chapter/the-applications-of-simulation-modeling-in-emergency-departments/186933/