
42 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Lean, Light, Adaptive,
Agile and Appropriate
Software Development:

The Case for a Less
Methodical Methodology

John Mendonca
Purdue University, USA

Jeff Brewer
Purdue University, USA

ABSTRACT
Historically, the approach to software engineering has been based on a search
for an optimal (ideal) methodology — that is, the identification and application
of a set of processes, methods and tools that can consistently and predictably
lead to software development success. This chapter presents the basis for
pursuing a more flexible and adaptive approach to methodology. Less
methodical methodologies, under a variety of names, take a contingency-
oriented approach. Because of the limitations in the nature of methodology,
the high failure rate in software development, the need to develop methodology
within an environmental context and the pressures of fast-paced “e-
development,” the authors argue that further exploration and definition of an
adaptive, contingency-based approach to methodology is justified.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.irm-press.com

�������

IRM PRESS

This chapter appears in the book, Practicing Software Engineering in the 21st Century by Joan Peckham.
Copyright © 2003, IRM Press, an imprint of Idea Group Inc. Copying or distributing in print or electronic
forms without written permission of Idea Group Inc. is prohibited.

The Case for a Less Methodical Methodology 43

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
Despite the high rate of failure in software development, the fundamental

strategy for achieving quality in software engineering continues to be methodology
— that is, discovery and application of that ideal set of processes and practices that
lead to software products that are accurate, effective, delivered on time and within
budget. The path to an optimal methodology leads theorists and practitioners toward
increasingly refined sets of concepts, models, rules, project management strategies,
descriptions of deliverables, tools, testing standards, test-case constructs and the
many other components of a well-defined methodology. Perhaps because of its
close identity with the “engineering” paradigm, ubiquitous failure seems not to have
shaken faith in the methodical approach to software development. In fact, the
response to failure seems often to be more methodology.

In recent years, due to the increasing complexity of the information technology
(IT) arena and the furious pace of e-commerce and e-business development, a less
methodical approach to software development management has gained attention.
This approach has often been linked with Extreme Programming (XP) and has been
called by a variety of names, including “lean” and “light” methodology (Yourdon,
2000b). Highsmith (2000) used the term “adaptive” in his book describing the basic
concepts, but he and others prominent in XP theory and practice seem to have settled
on “agile” as the preferred term. Earlier this year, with the support of XP proponents
and others, the “Manifesto for Agile Software Development” (2001) was developed
and published.

Regardless of the name, the approach embodies two characteristics. The first
characteristic is that it is less methodical. It is not fixated on the search for an optimal
methodology but is contingency oriented, allowing for adaptation and flexibility
depending on environmental issues. The second characteristic is that it incorporates
a concept of appropriateness. A methodology must not only adapt to its environment,
it must also reflect an appropriate level of rigidity, the “just-right” level between no
methodology and a heavily restrictive one that suffocates rather than informs.

This paper argues that because of the inherent limits to methodology, unrealized
expectations and the fast-paced, complex and unpredictable environment, a less
methodical contingency approach to software engineering is justified.

METHODOLOGY:
 EXPECTATIONS AND LIMITATIONS

As noted above, a software development methodology is a set of processes and
techniques for the management of software development. The numerous formal
documented methodologies and many more informal ones vary based on the many
paradigms and variables that are part of the software development landscape. Ivaria,
Hirschheim and Klein (2000/2001) suggest there are more than 1,000 information
systems development methodologies and offers a schema for their characterization

9 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/chapter/lean-light-adaptive-agile-

appropriate/28109

Related Content

The Case for Privacy Awareness Requirements
Inah Omoronyia (2016). International Journal of Secure Software Engineering (pp.

19-36).

www.irma-international.org/article/the-case-for-privacy-awareness-requirements/152245

Implementing Internal Software Process Assessment: An Experience at a

Mid-Size IT Company
Shukor Sanim Mohd Fauzi, Nuraminah Ramliand Mustafa Kamal Mohd Noor (2012).

Software Process Improvement and Management: Approaches and Tools for

Practical Development (pp. 78-99).

www.irma-international.org/chapter/implementing-internal-software-process-assessment/61211

Generation of Concurrency Control Program by Extending Functions in

Genetic Programming
Teruhisa Hochin, Tatsuya Saigo, Shinji Tamuraand Hiroki Nomiya (2014).

International Journal of Software Innovation (pp. 13-27).

www.irma-international.org/article/generation-of-concurrency-control-program-by-extending-

functions-in-genetic-programming/120516

On Developing Hybrid Modeling Methods using Metamodeling Platforms: A

Case of Physical Devices DSML Based on ADOxx
Srdjan Zivkovic, Krzystof Miksaand Harald Kühn (2015). International Journal of

Information System Modeling and Design (pp. 47-66).

www.irma-international.org/article/on-developing-hybrid-modeling-methods-using-metamodeling-

platforms/123607

On the Application of Automated Software Testing Techniques to the

Development and Maintenance of Speech Recognition Systems
Daniel Bolanos (2012). Advanced Automated Software Testing: Frameworks for

Refined Practice (pp. 30-48).

www.irma-international.org/chapter/application-automated-software-testing-techniques/62149

http://www.igi-global.com/chapter/lean-light-adaptive-agile-appropriate/28109
http://www.igi-global.com/chapter/lean-light-adaptive-agile-appropriate/28109
http://www.igi-global.com/chapter/lean-light-adaptive-agile-appropriate/28109
http://www.irma-international.org/article/the-case-for-privacy-awareness-requirements/152245
http://www.irma-international.org/chapter/implementing-internal-software-process-assessment/61211
http://www.irma-international.org/article/generation-of-concurrency-control-program-by-extending-functions-in-genetic-programming/120516
http://www.irma-international.org/article/generation-of-concurrency-control-program-by-extending-functions-in-genetic-programming/120516
http://www.irma-international.org/article/on-developing-hybrid-modeling-methods-using-metamodeling-platforms/123607
http://www.irma-international.org/article/on-developing-hybrid-modeling-methods-using-metamodeling-platforms/123607
http://www.irma-international.org/chapter/application-automated-software-testing-techniques/62149

