
�

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract
It is recognized that software is a unique abstract artifact that does not obey any known physical laws.
For software engineering to become a matured engineering discipline like others, it must establish its own
theoretical framework and laws, which are perceived to be mainly relied on cognitive informatics and de-
notational mathematics, supplementing to computing science, information science, and formal linguistics.
This paper analyzes the basic properties of software and seeks the cognitive informatics foundations of
software engineering. The nature of software is characterized by its informatics, behavioral, mathematical,
and cognitive properties. The cognitive informatics foundations of software engineering are explored on
the basis of the informatics laws of software and software engineering psychology. A set of fundamental
cognitive constraints of software engineering, such as intangibility, complexity, indeterminacy, diversity,
polymorphism, inexpressiveness, inexplicit embodiment, and unquantifiable quality measures, is identified.
The conservative productivity of software is revealed based on the constraints of human cognitive capacity.
[Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords:	 Cognitive Models; Cognitive Informatics; Denotational Mathematics; Foundations; Informat-
ics Laws; Nature of Software; Programming Psychology; Properties; Software Engineering;
Software Science; Software Science

INTRODUCTION

Software engineering is an applied discipline
of software science that adopts engineering ap-
proaches, such as established methodologies,
processes, architectures, measurement, tools,
standards, organisation methods, management
methods, quality assurance systems and the like,
in the development of large-scale software seek-

ing to result in high productivity, low cost, con-
trollable quality, and measurable development
schedule (Bauer, 1972; Dijkstra, 1976; Brooks,
1987; McDermid, 1991; Perters and Pedrycz,
2000; Wang, 2007a; Wang and King, 2000).
Software Science is a discipline that studies the
theoretical framework of software as instruc-
tive and behavioral information, which can be
embodied and executed by generic computers in

Exploring the Cognitive
Foundations of Software

Engineering
Yingxu Wang, University of Calgary, Canada

Shushma Patel, London South Bank University, UK

IGI PUBLISHING

This paper appears in the publication, International Journal of Software Science and Computational Intelligence, Volume 1, Issue 2
edited by Yingxu Wang © 2009, IGI Global

701 E. Chocolate Avenue, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 4825

� Int. J. of Software Science and Computational Intelligence, 1(2), 1-19, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

order to create expected system behaviors and
machine intelligence (Wang, 2007a, 2009a).
The relationship between software science and
software engineering can be described as that
software science is theoretical software engi-
neering; while software engineering is applied
software science.

The object under study in software en-
gineering and software science are software
and program systems, which are a set of
behavioral instructions for implementing a
certain architectural layout of data objects and
for embodying a set of expected behaviors on
a universal computer platform for a required
application. Large-scale software systems are
highly complicated systems that have never
been handled by mankind in engineering disci-
plines. It is recognized that software is a unique
abstract artifact that does not obey any known
physical laws (McDermid, 1991; Hartmanis.
1994; Wang, 2007a). For software engineering
to become a matured engineering discipline
like others, it must establish its own theoreti-
cal framework and laws, which are perceived
to be mainly relied on cognitive informatics
(Wang, 2002a, 2003a, 2007b) and denotational
mathematics (Wang, 2008a), supplementing
to computing science (Gersting, 1982; Lewis
and Papadimitriou, 1998), information science
(Shannon. 1948; Bell, 1953; Goldman, 1953;
Wang, 2002a, 2003a), and formal linguistics
(Chomsky, 1957, 1965; Wang, 2007a).

This paper explores basic properties of
software and cognitive foundations of software
engineering. The nature of software and soft-
ware engineering is explored in the facets of
the informatics, behavioral, and mathematical
properties. The cognitive informatics founda-
tions of software engineering are sought on the
basis of a set of informatics laws of software.
The fundamental cognitive constraints of
software engineering on intangibility, complex-
ity, indeterminacy, diversity, polymorphism,
inexpressiveness, inexplicit embodiment, and
unquantifiable quality measures are elaborated.
Based on the basic research, a set of cognitive
informatics principles for software engineer-
ing is established, such as the conservative

productivity of software constrained by human
cognitive capacity, the cognitive characteristics
of software engineering, software engineering
psychology, the cognitive mechanism of skill
transformation in software engineering, the cog-
nitive foundations of software quality theories,
and the cognitive complexity of software.

BASIC PROPERTIES OF
SOFTWARE AND SOFTWARE
ENGINEERING

The nature of software has been perceived quite
differently in research and practice of computing
and software engineering. Although in the IT
and software industries, software is perceived
broadly as a concrete product, there are three
types of metaphors in perceiving the nature of
software, known as the informatics, mathemat-
ics, and intelligent behavior metaphors. With the
product metaphor, a number of manufacturing
technologies and quality assurance principles
were introduced into software engineering.
However, the phenomenon, which we are
facing almost the same problems in software
engineering as we dealt with 40 years ago,
indicates a deficiency of the manufacture and
mass production based metaphors on software
and its development. Therefore, the nature of
software and software engineering need to be
systematically investigated.

The Informatics Properties of
Software

Information is the third essence in modeling
the natural world supplementing to matter and
energy. According to cognitive informatics
theory (Wang, 2002a, 2003a, 2007b), informa-
tion is any property or attribute of entities in the
natural world that can be abstracted, digitally
represented, and mentally processed. Software
is both behavioral information to designers and
instructive information to computers. With
the informatics metaphor, software may be
perceived as follows.

17 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/exploring-cognitive-foundations-software-

engineering/2790

Related Content

Toward Automatic Answers in User-Interactive Question Answering Systems
Tianyong Hao, Feifei Xu, Jingsheng Lei, Liu Wenyinand Qing Li (2011). International

Journal of Software Science and Computational Intelligence (pp. 52-66).

www.irma-international.org/article/toward-automatic-answers-user-interactive/64179

Designing Useful Robots: Is Neural Computation the Answer?
David Bisset (2011). Computational Neuroscience for Advancing Artificial Intelligence:

Models, Methods and Applications (pp. 250-269).

www.irma-international.org/chapter/designing-useful-robots/49237

Measuring Textual Context Based on Cognitive Principles
Ning Fang, Xiangfeng Luoand Weimin Xu (2009). International Journal of Software

Science and Computational Intelligence (pp. 61-89).

www.irma-international.org/article/measuring-textual-context-based-cognitive/37489

A Tour of Lattice-Based Skyline Algorithms
Markus Endresand Lena Rudenko (2018). Handbook of Research on Investigations

in Artificial Life Research and Development (pp. 96-122).

www.irma-international.org/chapter/a-tour-of-lattice-based-skyline-algorithms/207201

The Formal Design Model of an Automatic Teller Machine (ATM)
Yingxu Wang, Yanan Zhang, Philip C.Y. Sheu, Xuhui Liand Hong Guo (2010).

International Journal of Software Science and Computational Intelligence (pp. 102-

131).

www.irma-international.org/article/formal-design-model-automatic-teller/39108

http://www.igi-global.com/article/exploring-cognitive-foundations-software-engineering/2790
http://www.igi-global.com/article/exploring-cognitive-foundations-software-engineering/2790
http://www.igi-global.com/article/exploring-cognitive-foundations-software-engineering/2790
http://www.irma-international.org/article/toward-automatic-answers-user-interactive/64179
http://www.irma-international.org/chapter/designing-useful-robots/49237
http://www.irma-international.org/article/measuring-textual-context-based-cognitive/37489
http://www.irma-international.org/chapter/a-tour-of-lattice-based-skyline-algorithms/207201
http://www.irma-international.org/article/formal-design-model-automatic-teller/39108

