ABSTRACT

We consider linguistic database summaries in the sense of Yager (1982), in an implementable form proposed by Kacprzyk & Yager (2001) and Kacprzyk, Yager & Zadrożyński (2000), exemplified by, for a personnel database, “most employees are young and well paid” (with some degree of truth) and their extensions as a very general tool for a human consistent summarization of large data sets. We advocate the use of the concept of a protoform (prototypical form), vividly advocated by Zadeh and shown by Kacprzyk & Zadrożyński (2005) as a general form of a linguistic data summary. Then, we present an extension of our interactive approach to fuzzy linguistic summaries, based on fuzzy logic and fuzzy database queries with linguistic quantifiers. We show how fuzzy queries are related to linguistic summaries, and that one can introduce a hierarchy of protoforms, or abstract summaries in the sense of latest Zadeh’s (2002) ideas meant mainly for increasing deduction capabilities of search engines. We show an implementation for the summarization of Web server logs.

Keywords: computing with words and perceptions; data mining; fuzzy logic; fuzzy querying; linguistic summarization; protoform

INTRODUCTION

Data summarization is one of basic capabilities needed by any “intelligent” system. Since for the human being the only fully natural means of communication is natural language, a linguistic summarization would be very desirable, exemplified by, for a data set on employees, a statement (linguistic summary) “almost all young and well qualified employees are well paid”.

This may clearly be an instance of a paradigm shift that is advocated in recent time whose prominent example is the so-called “comput-
ing with words (and perceptions) paradigm” introduced by Zadeh in the mid-1990s, and extensively presented in Zadeh & Kacprzyk’s (1999) books.

Unfortunately, data summarization is still in general unsolved a problem. Very many techniques are available but they are not “intelligent enough”, and not human-consistent, partly due to a limited use of natural language.

We employ Kacprzyk & Zadrozny’s (1998, 2000a-d, 2001) interactive approach to linguistic summaries in which the determination of a class of summaries of interest is done via Kacprzyk & Zadrozny’s (1994, 1995a-b, 2001b) FQUERY for Access, a fuzzy querying add-in to Microsoft Access, extended to the querying over the Internet in Kacprzyk & Zadrozny (2000b). Since a fully automatic generation of linguistic summaries is not feasible at present, an interaction with the user is assumed for the determination of a class of summaries of interest, and this is done via the above fuzzy querying add-in.

Extending Kacprzyk & Zadrozny (2002), we show that by relating various types of linguistic summaries to fuzzy queries, with various known and sought elements, we can arrive at a hierarchy of prototypical forms, or – in Zadeh’s (2002) terminology – protoforms, of linguistic data summaries. This seems to be a very powerful conceptual idea.

We present an implementation of the proposed approach to the derivation of linguistic summaries for Web server logs. This implementation may be viewed as a step towards the implementation of protoforms of linguistic summaries.

LINGUISTIC SUMMARIES USING FUZZY LOGIC WITH LINGUISTIC QUANTIFIERS

In Yager’s (1982) approach, we have:

- V is a quality (attribute) of interest, e.g. salary in a database of workers,
- $Y = \{y_1, ..., y_n\}$ is a set of objects (records) that manifest quality V, e.g. the set of workers; hence $V(y_i)$ are values of quality V for object y_i,
- $D = \{V(y_1), ..., V(y_n)\}$ is a set of data (the “database” on question)

A linguistic summary of a data set (database) consists of:

- a summarizer S (e.g. young),
- a quantity in agreement Q (e.g. most),
- truth T - e.g. 0.7,
- a qualifier R (optionally), i.e. another linguistic term (e.g. well-earning), determining a fuzzy subset of Y.

as, e.g., “$T(\text{most of employees are young})=0.7$”. The truth T may be meant more generally as, e.g., validity.

Given a set of data D, we can hypothetize any appropriate summarizer S and any quantity in agreement Q, and the assumed measure of truth will indicate the truth of the statement that Q data items satisfy S.

We assume that the summarizer S (and qualifier R) is a linguistic expression semantically represented by a fuzzy set as, e.g., “young” would be represented as a fuzzy set in $\{1, 2, ..., 90\}$. Such a simple one-attribute summarizer serves the purpose of introducing the concept of a linguistic summary but it can readily be extended to a confluence of attribute values as, e.g. “young and well paid”. Clearly, the most interesting are non-trivial, human-consistent summarizers (concepts) as, e.g.: productive workers, involving complicated combinations of attributes, e.g.: a hierarchy (not all attributes are of the same importance), the attribute values
Related Content

On Localities of Knowledge Inconsistency
www.irma-international.org/article/localities-knowledge-inconsistency/53163/

Fuzzy Set Theoretical Approach to the Tone Triangle System
www.irma-international.org/article/fuzzy-set-theoretical-approach-to-the-tone-triangle-system/103353/

Hybrid Intelligent Diagnosis Approach Based On Neural Pattern Recognition and Fuzzy Decision-Making
www.irma-international.org/chapter/hybrid-intelligent-diagnosis-approach-based/56157/

The Formal Design Model of Doubly-Linked-Circular Lists (DLC-Lists)
www.irma-international.org/article/formal-design-model-doubly-linked/55130/